高強度背景電磁場中の仮想的真空分極の研究(の構想

Download Report

Transcript 高強度背景電磁場中の仮想的真空分極の研究(の構想

Study of order parameters through
fluctuation measurements by the
PHENIX detector at RHIC
Kensuke Homma
for the PHENIX collaboration
Hiroshima University
On Aug 11, 2005 at Kromeriz
1
XXXV International Symposium
on Multiparticle Dynamics 2005
Motivations
K. Rajagopal and F. Wilczek, hep-ph/0011333
• RHIC experiments probed the state of strongly interacting
dense medium with many properties consistent with partonic
medium. What about the information on the phase transition?
• Is it the first order or second order transition?
• Are there interesting critical phenomena such as tricritical
2
point?
Landau’s treatment
for 2nd order phase transition
Valid in a limit where the fluctuation on order parameter  is negligible even at T~Tc
Gibb’s free energy
G  U  TS
G(T , ) / V  g (T , )  r (T ) 2  u(T ) 4   h
Since order parameter  should disappear at T=Tc, assume r (T )  a(T  Tc) a  0
Susceptibility
  G 
  
2 1



  (2r  12u0 )
 h h0 h  h 
 
g(T,)
T>Tc
T<Tc
1
1
 
,  
2a | T  Tc |
4a | T  Tc |
T>Tc 02=0

Specific heat
(T  Tc) 2
g  a
4u
2
T<Tc 02=a(T-Tc)/2u
T
CH 
V
T   2G 
 S 
     2 
V  T  h
 T  h
 and CH show divergence or discontinuity,
while T varies around Tc.
3
Susceptibility and density fluctuations
G(T , ) / V  g (T , )  A( )2  r (T ) 2  u(T ) 4   h




ik r
ik r
h(r )  hk e
 (r )  0  k e
k
2
 (2 Ak 2  2r  12u0 ) 1
hk
1/ 2
1
  (T )


A
k  


   
T>Tc
2
2 2
a
|
T

Tc
|
2( Ak  a | T  Tc |) 1  k  


1/ 2
1
  (T )


A

   
k  

T<Tc
2
2 2
2( Ak  2a | T  Tc |) 1  k  
 2a | T  Tc | 


 
(

(
r
)




)(

(
r
'
)




)

k
T

(
r
 r ')
Fluctuation-dissipation theorem
B
Susceptibility
k 

With Fourier transformation  k   dVe
  
 k ( r  r ')
 
1
k 2   2
k T
)  B  k
V
 (r  r ' ) 
(k   k )( k    k
 


exp( | r  r ' | /  )
Ornstein-Zernike behavior ( (r )   )( (r ' )   )  k BT
 
| r  r '|
4
Fluctuation measurements by PHENIX
• Multiplicity fluctuations (density
fluctuations ) as a function rapidity
gap size with as low pt particle as
possible.
 Correlation length  and singular
behavior in correlation function.
• Average pt fluctuations
(temperature fluctuations)
 Specific heat
See PRL. 93 (2004) 092301
• In this talk, I will focus on only
multiplicity fluctuation
measurements.
Geometricall acceptance
Dh  0.7
D  p
5
Charged particle multiplicity distributions and
negative binomial distribution (NBD)
DELPHI: Z0 hadronic Decay at LEP
2,3,4-jets events
E802: 16O+Cu 16.4AGeV/c at AGS
most central events
[DELPHI collaboration] Z. Phys. C56 (1992) 63
[E802 collaboration] Phys. Rev. C52 (1995) 2663
Universally, hadron
multiplicity distributions are
well described by NBD. 6
Negative binomial distribution (NBD)
distribution
Pn    n /(1   ) n 1 Bose-Einstein
μ: average multiplicity
n
(k )
n
P
(n  k )   / k 
1



(n  1)(k )  1   / k  1   / k k

1 1
 
2

 k
NBD
2
   n2    n 2
1
2 1
 2   F2 ( )  1
k ( ) 

 n 2   n 
F2 ( ) 
 n 2
NBD correspond to multiple BoseEinstein distribution and the
parameter k corresponds to the
multiplicity of those Bose-Einstein
emission sources.
NBD can be Poisson distribution with
the infinite k value.
F2 : second order normalized factorial moment
7
Charged particle multiplicity distributions
in different dh gap
PHENIX: Au+Au √sNN=200GeV
2.16 < φ < 3.73 [rad]
| Z | < 5cm
No magnetic field
Δη<0.7, Δφ<π/2
-0.35 < η < 0.35
The effect of dead areas have been corrected.
δη=
δη=
δη=
δη=
δη=
δη=
δη=
δη=
0.09
0.18
0.35
0.26
0.44
0.53
0.61
0.70
(1/8)
(2/8)
(3/8)
(4/8)
(5/8)
(6/8)
(7/8)
(8/8)
:
:
:
:
:
:
:
:
P(n)
P(n)
P(n)
P(n)
P(n)
P(n)
P(n)
P(n)
x
x
x
x
x
x
x
107
106
105
104
103
102
8 1
10
Relation between k and
integrated two particle correlation function
Normalized
correlation function
R2 ( y1 , y2 ) 
C2 ( y1 , y2 )
 2 ( y1 , y2 )

1
1 ( y1 ) 1 ( y2 ) 1 ( y1 ) 1 ( y2 )
1 ( y ) :
 2 ( y1 , y2 ) :
inclusive single particle density
inclusive two-particle density
C2 ( y1 , y2 ) : two-particle correlation function
Relation with NBD k
1
k (h )
 F2  1  K 2 


h
h
C2 ( y1 , y2 ) dy1dy2
1 ( y1 ) 1 ( y2 )dy1dy2
Candidates of function forms with two particle correlation length 
Most general form: many trials failed.
e | y1  y2 |/ 
R2  R0
| y1  y2 |
HBT type correlation in E802 : failed to describe data
R2  R0e | y1  y2 |/ 
Empirical two component model with R0=1.0
R2  e | y1  y2 |/   b
9
E802 type function can not describe the data
Correlation function used in E802
NBD k vs. δη at E802
P. Carruthers and Isa Sarcevic,
Phys. Rev. Lett. 63 (1989) 1562
R2  R0e | y1  y2 |/ 
1
h / 2
k (h ) 
R0 [1  ( / h )(1  eh /  )]
Phys. Rev. C52 (1995) 2663
10
Empirical two component fit
 dependent part +  independent part with R0 =1
R2  e
| y1  y2 |/ 
2 2 [h /   1  e h /  ] b
b :
 F2  1 

2
k (h )
h
2
1
PHENIX: Au+Au √sNN=200GeV, Δη<0.7, Δφ<π/2
11
Participants dependence of ξ and b
PHENIX: Au+Au √sNN=200GeV
Two particle correlation length
Correlation strength of what?
12
What is the origin of the two components?
Go back to Ornstein-Zernike’s theory (see Introduction to
Phase Transitions and Critical Phenomena by H.E.Stanley)
which explains the growth of forward scattering amplitude of light
interacting with targets at the phase transition temperature.
N
Density of fluid element at r
n(r )    (r  ri ),  n(r )  N / V  n
i 1
C2 (r, r' )  (n(r)  n(r) )(n(r' )  n(r' ) )



r
(r-r’)
N
N
i 1
j 1
C2 (r  r ' )    (r  ri )  (r  rj )  n 2


r’
C2 (r  r ' )  n (r  r ' )  n2(r  r ' )
R2 (r  r ' )   (r  r ' ) / n  (r  r ' )

b
Self interaction
renormalizing
singular part ?
 exp( | r  r ' | /  )
Long range correlation
13
ξ vs. number of participants
PHENIX: Au+Au √sNN=200GeV
In the case of thermalized ideal gas,
Two particle correlation length
  dN / dy  N part  T 3
  N part  | T  Tc |3
log( )   log(N part )
One slope fit gives
α = -0.72 ± 0.03
Linear behavior of the correlation length as a function of the number of
participants has been obtained in the logarithmic scale.
14
Conclusions
• Multiplicity distributions measured in Au+Au collisions at
√SNN=200GeV can be described by the negative binomial
distributions.
• Two particle correlation length has been measured based on
the empirical two component model from the multiplicity
fluctuations, which can fit k vs. dh in all centralities remarkably
well.
• Extracted correlation length behaves linearly as a function of
number of participants in logarithmic scales. Assuming one
slope component, the exponent was obtained as -0.72±0.03.
• The interpretation of b parameter is still ambiguous. Any
criticize or different view points are more than welcome.
15
Backup Slide
16
Uncorrected Npart*b vs. Npart
Centrality k-Map in 10% bins
450
350
Bias on NBD k
due to finite bin size of centrality
300
"0-10"
250
"10-20"
200
"20-30"
150
"30-40"
100
50
0
50
100
200
500
1000
infinity
intrinsic k
Intrinsic k
Npart*b
Observed
observed k k
400
17
Npart
Important HI jargon : Participants (Centrality)
peripheral
Participant
b
central
To ZDC
To BBC
Spectator
Whether AA is a trivial sum of NN
or
something nontrivial ?
Relate them to Npart and Nbinary (Ncoll )
using Glauber model.
–
Straight-line nucleon trajectories
–
Constant NN=(40 ± 5)mb.
–
Woods-Saxon nuclear density:
15-20%
1015%5-10%
0-5%
0-5%
1
 (r )   o  distribution Nch
Multiplicity
rR
1  exp

d


R  1.19A1/ 3  1.61A1/ 3
 (6.65  0.03) fm
d  (0.54  0.01) fm
18
Why not observing fluctuations ?
The Microwave Sky image from the WMAP Mission
http://map.gsfc.nasa.gov/m_mm.html
• Fluctuation carries
information in early
universe in cosmology
despite of the only single
Big-Bang event.
• Why don’t we use the
event-by-event
information by getting all
phase space information
to study evolution of
dynamical system in
heavy-ion collisions ?
• We can firmly search for
interesting fluctuations
with more than million
times of mini Big-Bangs.
19