No Slide Title
Download
Report
Transcript No Slide Title
LEARNING BY APPLICATION
FIND THE THEVENIN EQUIVALENT FOR THE UNKNOWN
ELEMENT USING A RESISTOR AND A VOLTMETER
2.4V
EQUIVALENT FOR
ELEMENT+SOURCE
VTH 2.4V
(measured
in open
circuit)
1.6V
2.4V
RTH 2k
0.8mA
MEASURED ACROSS
TEST RESISTOR
DESIGN EXAMPLE
Implement the fine/coarse adjustment
VTUNE
Possible Circuit
1
1
VCOARSE VFINE
2
20
• Sum of terms suggests superposition
• gains less than one suggest voltage divider
Circuits for
superposition
VTUNE _ C
VCOARSE
R || R1
1
R || R2
1 VTUNE _ F
V
(
R
||
R
)
R
20
( R || R2 ) R1 2 FINE
1
2
INFINITE POSSIBLE SOLUTIONS.
USE OTHER CRITERIA PLUS
ENGINEERING JUDGMENT
e. g ., R 1k (reasonable choice)
R1 900, R2 9k
DESIGN EQUATIONS
2 EQS AND THREE UNKNOWNS!
DESIGN EXAMPLE
DESIGN AN ATTENUATOR PAD
DESIGN EQUATIONS
RTH _ IN
RTH _ IN RTH _ OUT 50
VOUT
1
VS
10
R2 R1 || ( R2 RL ) 50
RTH _ OUT R2 R1 || ( R2 RS ) 50
1
RL RS Dependent Eqs!
VTH
VOUT
R1
V
R1 R2 RS S
RL
1
VTH VTH
RL RTH _ OUT
2
VOUT
R1
1
VS
2 R1 R2 RS
R1
1
1
2 R1 R2 RL 10
2
SOLVING THE EQUATIONS YIELDS
R1 20.83 , R2 33.33
Analysis of Solution
• requires special, high accuracy resistors
• small resistance may imply large power dissipated
• may require large power rating to avoid heating
DESIGN EXAMPLE
DESIGN A CIRCUIT TO REALIZE THE EQUATION
VO 3VS 2000 I S
[VO in Volts , I S in mA]
ANALYSIS OF THE REQUIREMENTS
• sum of voltage and current
• gains larger than one
• inverting
ANALYSIS OF PROPOSED CIRCUIT
VA 0 (infinite gain)
Proposed solution
VO
VS
@ A:
IS
0
R2
R1
OTHER METHODS
• superposition
• Norton (see book)
R2
VO R2 I S VS
R1
R2 2000
ANALYSIS OF SOLUTION
• 2k is standard resistor
• 667 is 1k||2k
• uses standard components!
R2 3 R1 R1 667
DESIGN EXAMPLE
USE A SERIES RESISTOR WITH EACH FAN TO
SENSE CURRENT
PROVIDE AN INDICATION OF TOTAL AIRFLOW
VF 100 I F FCFM 200 I F
CONSTRAINTS
• VOLTAGE DROP ON SENSING RESISTOR CANNOT
EXCEED 2% OF NOMINAL 24V FAN VOLTAGE
• 1V = 50CFM FOR THE INDICATOR
Design of Indicator
Adder
inverter
Design of sensor
Inverter
R5 R6
R
24 0.48
R
I
F
0.0102F
235.2mA V
200
100
R
R
R
0.48 RSENSE I F
VO 4 VSENSE 4 0.0102FCFM || FCFM 50 VO 1 1 4 0.0102 50
R3
R3
R3
IF
SENSE
SENSE
RSENSE 2.04
PSENSE I F RSENSE 0.11W
2
SENSE
R4
1.96 2
R3
F
CFM
DESIGN EQUATIONS!
CFM
LEARNING BY DESIGN
CURRENT OVERLOAD SENSOR
VS
Vbatt 12V
50
v VS
51
KCL@v :
VS v V A v
0
1k
50k
VS
v v
v
Vbatt
2
THIS POINT MUST GO
HIGH WHEN CURRENT
EXCEEDS 9A
VA 50(VS VS ) 50Vsense 50 Rsense 9( A) 6V Rsense 0.0133
DESIGN REQUIREMENT
I batt 9 A VA 6V
DESIGN EQUATIONS
LEARNING BY DESIGN
R
R1
R
9
0 1 2 (0.5) 2 Vref
R
R1
1
R1
5
R2
Vref V
R2
5 1 (1.0) Vref
9
R
R
1
1
CHOOSE R1 10k
VS
DESIGN REQUIREMENT
INPUT
OUTOUT
0.5 VS 1.0V
0 VO 5V
DETERMINE Vref , R1, R2
KCL @ v -
GENERATES Vref AND ISOLATES
VOLTAGE DIVIDER
VO VS Vref VS
0
R2
R1
R
R
VO 1 2 VS 2 Vref
R1
R1
Analyzing circuit using superposition