Typical TF from Horizontal Actuator to Geophones

Download Report

Transcript Typical TF from Horizontal Actuator to Geophones

Modal Analysis and Feedback
Control of HAM MEPI
Lei Zuo
Osamah Rifai
Samir Nayfeh
Oct 16, 2002
LIGO-G030187-00-D
Page 1
Overview
• Review of loop transmissions vs. modal data
• Preliminary look at control
– Multiple lightly damped modes close to crossover make
control difficult
• Approaches
– Modal control may decrease the relative magnitudes of
the flexible modes.
– Easiest approach to robust performance: structural
damping.
– Optimal MIMO Control can improve the performance,
but requires a good model
LIGO-G030187-00-D
Page 2
Typical TF from Horizontal Actuator to Geophones
10
Magnitude
Magnitude (dB)
Horizontal Actuator 1 to All Horizontal (solid) and Vertical (dashed) Velocities
10
10
18.4Hz
8.6Hz
16.4Hz
14Hz
0
-2
-4
10
0
10
1
300
200
Phase
Phase
40dB/dec
20dB/dec
blue 1
red 2
mage 3
green 4
100
0
-100
180°-15°
-200
-300
10
0
LIGO-G030187-00-D 101
Frequency (Hz)
Page 3
Typical TF from Vertical Actuator to Geophones
10
Magnitude
Magnitude (dB)
Vertical Actuator 3 to All Vertical (solid) and Horizontal (dashed) Velocities
10
10
18.5Hz 27.7Hz
14Hz 19.1Hz 29.2Hz
9.6Hz
0
-2
-4
10
0
10
1
blue 1
red 2
mage 3
green 4
300
200
Phase
Phase
40dB/dec
20dB/dec
100
0
-100
180°-85°
-200
-300
10
0
LIGO-G030187-00-D
Frequency (Hz)
10
1
Page 4
Observation of this two typical TFs
• The horizontal-horizontal coupling is very strong, so
is vertical-vertical coupling. The vertical -horizontal
coupling is very strong at around 3Hz, 19Hz and
28Hz
• The actuator-sensor pairs seems to be collocated well
• For control consideration, the critical modes are the
two modes around 19Hz, and two modes around
28Hz. (The modes around 14Hz are also critical)
LIGO-G030187-00-D
Page 5
Modal Analysis
LIGO-G030187-00-D
Page 6
Typical Measurement (x)
15.7Hz 18.9Hz
18.3Hz
13.4/13.7Hz
20.38/20.41Hz
8.4/9.3Hz
9.9/10.9Hz
6.8Hz
5.0Hz
4.4Hz
27.5/28.7Hz
2.95Hz
1.68Hz (2.5Hz)
1.3Hz
LIGO-G030187-00-D
Page 7
Typical Measurement (y)
15.7Hz
18.3Hz
18.9Hz
20.38/20.41Hz
8.4/9.3Hz 13.4/13.7Hz
27.5/28.7Hz
4.4Hz
6.8Hz 9.9/10.9Hz
(5.0Hz)
(2.95Hz)
2.5Hz
1.68Hz
(1.3Hz)
LIGO-G030187-00-D
Page 8
Typical Measurement (z)
18.3/18.9Hz
27.5/28.7Hz
15.7Hz
13.4/13.7Hz
9.3Hz
6.8Hz
5.0Hz
8.4Hz 9.9/10.9Hz
20.38/20.41Hz
1.3Hz 2.95Hz
2.5Hz
4.4Hz
(1.68Hz)
LIGO-G030187-00-D
Page 9
Critical Modes
13.37Hz, in-plane bending + twist 13.71Hz, in-plane bending (local)
15.75Hz, in-plane bending
In-plane Beam Bending
18.32Hz, in-plane bending
LIGO-G030187-00-D
Page 10
Critical Modes
18.85Hz, out-of-plane twist
Twist
LIGO-G030187-00-D
Page 11
Critical Modes
27.45Hz, tank
28.74Hz, tank
Tank Related
LIGO-G030187-00-D
Page 12
Mode Summary
• Modes at (2.5),3.0, 4.4, 5.0, 6.8, 8.4, and 9.3 Hz are
rigid-body modes (compare with Dennis’s modeling?)
• Modes at 13.4, 13.7, 15.7 Hz, and 18.3 Hz are
associated with in-plane bending
• Mode at 18.9 Hz is related to twist
• Modes at 27.5 and 28.7 Hz are associated with tank
motion
• Two modes around 20.4 are out-of-plane (vertical)
bending
• Modes at 1.3 and 1.7 Hz seems to be tank
motion+frame rigid body (measurements is not so
reliable at so low freq)
• Modes at 9.9, 10.9 are
rigid-body plus some bending
LIGO-G030187-00-D
Page 13
Feedback Control of HAM
Fd
V
G(s)
T(s)=
=
Fd
1+G(s)H(s)
G(s), HAM
dynamics
+-
F
V
H(s), sensing
and control
• |G(jw)H(jw)| >>1 at low frequency, T(jw)1/H(jw)
•
|G(jw)H(jw)| <<1 at high frequency, T(jw) G(jw)
LIGO-G030187-00-D
Page 14
-1
|H(s)|
A Control Loop (Concept Design)
-2
-1
1
10
|G(s)H(s)|
Loop Gain
-2
0
10
+1
-1
+1
10
|G(s)|
-2
10
-3
|T(s)|
10
Closed Loop
+2
+1
0
1
10
10
15 reduction 1-3Hz
300
250
200
150
100
50
0
-90°
-50
-100
-150
-200
0
10
-180°
LIGO-G030187-00-D
Phase Margin
180-15-90+=75°1
10
Page 15
(The low-frequency characteristics of geophones is not good  Position feedback will be used for <0.5Hz)
FdV and X0X
| T ||
V
|
Fd
V
sX

Fd
k ( X  Xo )
-1/dec


V
Fd
X

V
s
Xo

Fd
k
|
X
|
Xo
1

LIGO-G030187-00-D
-2/dec
Page 16
Further Consideration
• The previous concept design is for vertical
channels based on the assumption of low
plant uncertainties.
• See the previous control loop again:
* Multiple crossing, not robust (unstable!)
* PM is 15°, not 75° (add lead? no)
• See horizontal channels
* Multiple crossing, not robust
* PM is only 5°
LIGO-G030187-00-D
Page 17
Vertical Loop (Concept Design)
-1
|H(s)|
-2
Multiple Crossings
-1
1
10
|G(s)H(s)|
Loop Gain
-2
0
10
+1
-1
10
|G(s)|
-2
10
-3
|T(s)|
10
0
1
10
Closed Loop
10
15 reduction 1-3Hz
After Structure
Modification
300
250
200
150
100
50
0
-90°
-50
-100
-150
-200
0
10
-180°
LIGO-G030187-00-D
(Position feedback will be used for <0.5Hz)
Phase Margin
180-15-90+=75°180-75-90+=15°1
10
Page 18
-1
|H(s)|
Horizontal Loop (Concept Design)
-2
Multiple Crossings
-1
1
10
|G(s)H(s)|
-2
0
Loop Gain 10
+1
-1
10
-2
10
|G(s)|
10
|T(s)|
-3
Closed Loop
0
1
10
10
15 reduction 1-3Hz
After Structure
Modification
300
150
100
200
50
100
0
0
-50
-90°
-100
-100
-200
-150
0
10
-180°
LIGO-G030187-00-D
(Position feedback will be used for <0.5Hz)
Phase Margin
10
180-85-90+=5°1
Page 19
Suggestion for Feedback Control
* Modal Decomposition SISO Control.
Questions (SISO):
1) how good is the
decomposition?
|·|
1
Other rigid-body modes from
non-perfect decomposition
X
Xo
Dominant rigid-body mode
Flexible modes
2) how large are the
peaks of flexible
modes?
V
Fd

LIGO-G030187-00-D
Page 20
Suggestions on Structure Modification
(to make control easier)
• Add constrained layer (viscoelastic) damping to
the beam structure (to damp the bending modes)
• Make the joints stiffer; add some damping to the
joints; or add another beam
• Reduce the coupling between tank and the frame.
LIGO-G030187-00-D
Page 21
Conclusions
• Multiple lightly damped modes close to crossover
make control difficult
– Instability
– Amplification of disturbances
• Modal control may decrease their relative
magnitudes.
• Easiest approach to robust performance: structural
damping.
• Optimal MIMO Control can improve the
performance, but requires a good model
LIGO-G030187-00-D
Page 22
Other Control Schedules Discussed
• Osamah: low frequency crossing with high order
controller
• Dave: notch filter
• Rich, David and Denis: high frequency crossing
LIGO-G030187-00-D
Page 23
Appendix
LIGO-G030187-00-D
Page 24
Typical TF from Horizontal Actuator to Positions
Horizontal
Actuator 1 to All Horizontal (solid) and Vertical (dashed) Positions
-1
Magnitude
Magnitude (dB)
10
10
10
10
-2
-3
-4
10
0
10
1
500
Phase
Phase
0
-500
-1000
-1500
-2000
10
0
LIGO-G030187-00-D 10
Frequency (Hz)
1
Page 25
Typical TF from Vertical Actuator to Positions
Vertical Actuator 3 to All Vertical (solid) and Horizontal (dashed) Positions
Magnitude
Magnitude(dB)
10
10
10
10
-1
-2
-3
-4
10
0
10
1
500
Phase
Phase
0
-500
-1000
-1500
-2000
0
10
1
LIGO-G030187-00-D
Frequency (Hz)
10
Page 26
Out-of-Plane Bending Modes
20.38Hz
20.41Hz
Out-of-Plane Beam Bending Related
LIGO-G030187-00-D
Page 27
Mode Shapes
1.3Hz
1.7Hz
(low-freq, measurement isLIGO-G030187-00-D
not reliable)
Page 28
Mode Shapes
2.50Hz
2.97Hz
LIGO-G030187-00-D
Page 29
Mode Shapes
4.41Hz
4.99Hz
LIGO-G030187-00-D
Page 30
Mode Shapes
6.86Hz
8.33Hz
LIGO-G030187-00-D
Page 31
Mode Shapes
9.25Hz
LIGO-G030187-00-D
Page 32
Mode Shapes
9.82Hz
10.9Hz
LIGO-G030187-00-D
Page 33