Transcript Slide 1
Energy-Efficient, Large-scale Distributed Antenna System (L-DAS) under revision for JSTSP Parts of this work have been presented at the IEEE GLOBECOM, Atlanta, GA, USA, Dec. 2013 Jingon Joung, Yeow Khiang Chia, Sumei Sun Modulation and Coding Department Institute for Infocomm Research, A*STAR Internal Meeting with Prof. Moe Z. Win 14 January 2014 Motivation • To achieve high spectral efficiency (SE) and energy efficiency (EE) • For high SE – MU-MIMO: LTE-A beyond Re-7 – Distributed systems: e.g., coordinated multi-point operation (CoMP), LTE-A Re-11 – Massive (large) MIMO: recent trend • For high EE – Power control (PC): efficient-power transmission L-DAS System BBU: baseband unit (signal processing center) IAD: intra-ant distance U users M antennas H: U-by-M MU-MIMO ch. matrix S: M-by-U binary AS matrix W: M-by-U precoding matrix P: U-dim diagonal PC matrix x: U-by-1 symbol vector n: U-by-1 AWGN vector Objectives & Contribution • • • • Study an L-DAS Provide a practical power consumption model Formulate an EE maximization problem Resolve issue on huge signaling, complexity requirement: – – – – Antenna selection (AS) method Threshold-based user-clustering method MU-MIMO precoding method Optimal and heuristic power control methods • Verify the EE merit of L-DAS Power Consumption Model Power consumption TPI (transmit power independent) term TPD (transmit power dependent) term eRF (electric RF) oRF (optical RF) Cont. • TPD term • TPI term Pcc1: eRF Pcc2: per unit-bit-and-second of oRF Ru: target rate of user u β>=0: implies overhead power consumption of MU processing compared to SU-MIMO EE Maximization Problem Splitting Problem • Channel-gain-based greedy AS: RSSI • Min-dist-based greedy AS: localization Info. Cont. • SINR-threshold-(γ)-based clustering – SINR btw users in the same cluster < γ – SINR btw users in diff clusters > γ γ = 25dB γ = 32dB Per-Cluster Optimization • Now, AS matrix is given • For fixed PC matrix, – ZF-MU-MIMO precoding matrix Cont. • Now, AS and precoding matrices are given • Assumption: ICI is negligible – Optimal for MU: using bisection algo, convex feasibility test – Heuristic for MU and optimal for SU: Numerical Results Single cell Single antenna for each user No adaptation for - # of antennas for each user - clustering threshold Remaining Issues for L-DAS • Deployment, implementation, and operation – – – – – – Cell planning, Regular/irregular deployment of antennas Synchronization for large cluster Robustness against CSI error Infrastructure cost for wired optical fronthaul Comparative, quantitative study of L-DAS and LCAS considering Capex and Opex Cont. • Iteration for – # of antennas – clustering threshold Cont. • Example at cell boundary of two cells • Outage increase # of active DAs 1 =-Inf 0.9 =-Inf 0 1 0.8 Circle: Non-outage user Circle color stands for the cluster/DA 0.7 X: Deactivated DA 0.6 0.5 Colored Square: Active distributed antenna (DA) 0.4 0.3 Colored Thick Circle: Active DA allocated to the outage user 0.2 Black Dot: outage user Circle color stands for the cluster/DA 0.1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Cont. • Outage 1 =-Inf 0.9 =-Inf 0 1 0.8 0.7 0.6 Threshold Update 0.5 0.4 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Cont. • Increase clustering threshold γ outage 1 =1e-005 0.9 =1e-005 0 1 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Cont. • Increase # of active DAs outage 1 =1e-005 0.9 =1e-005 0 1 0.8 0.7 0.6 Threshold Update 0.5 0.4 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Cont. • Increase clustering threshold γ outage 1 =4 0.9 =4 0 1 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Cont. • Increase # of active DAs outage 1 =4 0.9 =4 0 1 0.8 0.7 0.6 Threshold Update 0.5 0.4 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Cont. • No outage: threshold update (2,3) times 1 =4 0.9 =8 0 1 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Cont. • Demo • cell_no_outage Cont. • Demo • cell_outage