Transcript Folie 1
Laboratory for Radiochemistry and Environmental Chemistry Mendeleev’s principle against Einsteins relativity news from the chemistry of superheavy elements H.W. Gäggeler > Reminiscences: from Mendelejeev’s periodic table to the discovery of mendelevium, the last “real” chemical element > Positioning four new chemical elements into the periodic table during the last decade. Mendelejeevs dreams become true! > How reliable is single atom chemistry? Proof of principle with elements Hs and 112 > Einsteins influence on the chemistry of heaviest elemenst, so far up to Z=114 Mendeleev; Dubna 2009 Mendelejeev‘s „second“ Periodic Table from 1871 D.I. Mendeleev (8 Feb. 1834 – 2 Feb. 1907) Predictions by Mendeleev in 1871 Eka-Al: Discovered by P.E. Lecoq de Boisbaudran in 1875, named Ga Eka-B: Discovered by L.F. Nilson in 1879, named Sc Eka-Si: Discovered by C. Winkler in 18886, named Ge Major refinements Noble gases: Sir William Ramsey (1894) Henry Moseley: Atomic number, determined via X-rays, defines ordering of elements (1914) Glenn T. Seaborg: Actinides series (1945) Periodic Table in the 1930‘s G.T. Seaborg, W. D. Loveland (1990) Periodic Table today 1 18 1 2 H 2 13 14 15 16 17 He 3 4 5 6 7 8 9 10 Li Be B C N O F Ne 11 12 13 14 15 16 17 18 Na Mg 3 4 5 6 7 8 9 10 11 12 Al Si P S Cl Ar 19 20 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 37 38 39 40 41 42 43 45 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 55 56 57-71 72 73 74 75 76 78 79 80 81 82 83 84 85 86 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 87 88 89-103 104 105 106 107 115 116 116 Fr 21 Ra Ac 57 58 59 Lanthanides La Ce Pr Actinides 60 46 77 112 108 61 114 -- Bh Hs Db Sg Rf 44 62 109 110 Mt Ds Rg 63 111 64 114 113 65 66 67 68 69 118 70 71 Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 96 98 99 100 101 103 Cf Es Fm Md No Lr 89 90 91 92 93 94 95 97 Ac Th Pa U Np Pu Am Cm Bk 102 LogT1/2 (sec) CHART OF THE NUCLIDES 130 Superheavy Elemens 120 Proton number 110 14 Transuranium Elemens 100 298 114 90 Spherical Shell Stable Elemens 80 10 70 208 60 Spherical Shell 6 Pb 50 2 40 Sea of Instability 30 -2 20 10 -6 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 Neutron number Courtesy: Yu.Ts. Oganessian Discovery of new elements – the failure of chemistry! The heaviest element discovered purely by chemical means: Mendelevium! (1955) → Synthesis: bombardment of 253Es with a-particles. → Collection of products in a foil. → Separation of products after dissolution of foil on a cation exchange column with a-HIB Mendeleev, Dubna 2009 Count rate [cpm] Elution of actinides on a cation exchange column by a-HIB Elution in drops Discovery of Mendelevium on the basis of 7 atoms unknown Es Cf Fm A. Ghiorso et al., Phys. Rev. 98, 1518 (1955) Mendeleev, Dubna 2009 Positioning of new elements during the last decade 1 18 1 2 H 2 3 4 Li Be 11 12 2009? 2002 2007 1999 13 14 15 16 17 He 5 6 7 8 9 10 B C N O F Ne 13 14 15 16 17 18 Na Mg 3 4 5 6 7 8 9 10 11 12 Al Si P S Cl Ar 19 20 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 37 38 39 40 41 42 43 45 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 55 56 57-71 72 73 74 75 76 78 79 80 81 82 83 84 85 86 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 87 88 89-103 104 105 106 107 Fr 21 Ra Ac 57 58 59 Lanthanides La Ce Pr Actinides 60 46 77 112 108 107 108 109 110 111 112 Bh Hs Mt Ds Rg -- 61 114 -- Bh Hs Db Sg Rf 44 62 63 64 65 114 116 -66 67 68 69 70 71 Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 96 98 99 100 101 103 Cf Es Fm Md No Lr 89 90 91 92 93 94 95 97 Ac Th Pa U Np Pu Am Cm Bk Techniques developed at PSI and Bern University 102 Reactions used and number of atoms found in the „first ever chemical studies“ during the last decade Bohrium (Z=107); Main experiments at PSI 249Bk(22Ne;4n)267Bh (T = 17 s); 6 atoms (R. Eichler et al., Nature, 407, 64 (2000)) 1/2 Hassium (Z=108); Main experiments at GSI 248Cm(26Mg;5n)269Hs(T = 15 s); 7 atoms (C.E. Düllmann et al., Nature, 418, 860 (2002)) 1/2 Element 112; Main experiments at FLNR/JINR 242Pu(48Ca,3n)287114 (T = 0.5 s)283112 (T = 4 s); 2 atoms (R. Eichler et al., Nature, 1/2 1/2 447, 72 (2007)). Confirmed with 3 additional atoms (R. Eichler et al., Angew. Chem. Int. Ed., 47(17), 3262 (2008) Element 114: Main experiments at FLNR/JINR 242,244Pu(48Ca;3,4n)287,288,289114 (T = 0.5s;0.8s;2.6s); 3 – 4 atoms (R. Eichler et 1/2 al.,submitted to Nature (2008)). Mendeleev, Dubna 2009 How reliable is single atom chemistry? 1st example: hassium chemistry Investigation of hassium in form of its very volatile molecule HsO4 Applied technique: Thermochromatography Mendeleev, Dubna 2009 Thermochromatography Internal chromatogram Temperature gradient T=100K T yield T=300K Tdep detectors length Result: Tdep DHads Thermochromatography of OsO4 and HsO4 -44±5 °C Rel. Yield [%] 80 70 4 atoms -82±5 °C HsO4 60 Exp: 172Os (T1/2=19.2 s) MCS (Os): -39.5 kJ/mol MCS (Hs): -46.5 kJ/mol Temperature profile 1 atom 0 -20 -40 -60 -80 OsO4 50 40 Exp:269Hs (T1/2 =9.7 s) -100 2 atoms -120 30 -140 20 -160 10 -180 0 -200 1 2 3 4 5 6 7 8 Detector C.E. Düllmann et al., Nature 418,860 (2002) 9 10 11 12 Temperature [°C] 90 Nobel Laureate Glenn T. Seaborg, The first human being, able to celebrate „his“ element! Mendeleev, Dubna 2009 How reliable is single atom chemistry? 2nd example: element 112 Element 112 presumably is highly volatile so that it can be separated and analysed in elemental form Applied technique: Thermochromatography Mendeleev, Dubna 2009 Periodic Table today 1 18 1 2 H 2 13 14 15 16 17 He 3 4 5 6 7 8 9 10 Li Be B C N O F Ne 11 12 13 14 15 16 17 18 Na Mg 3 4 5 6 7 8 9 10 11 12 Al Si P S Cl Ar 19 20 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 37 38 39 40 41 42 43 45 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 55 56 57-71 72 73 74 75 76 78 79 80 81 82 83 84 85 86 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 87 88 89-103 104 105 106 107 115 116 116 Fr 21 Ra Ac 57 58 59 Lanthanides La Ce Pr Actinides 60 46 77 112 108 61 114 -- Bh Hs Db Sg Rf 44 62 109 110 Mt Ds Rg 63 111 64 114 113 65 66 67 68 69 118 70 71 Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 96 98 99 100 101 103 Cf Es Fm Md No Lr 89 90 91 92 93 94 95 97 Ac Th Pa U Np Pu Am Cm Bk 102 Trend of sublimation enthalpy within group 12 160 Zn 140 DHsubl, kJ/mol 120 Cd 100 Hg 80 60 Mendeleev says: 112 an even more volatile metal compared to Hg! 40 20 ?112 0 0 20 40 60 Z 80 100 120 However,….. • Pitzer (1975) says: because of relativistic effects element 112 could well behave like a noble gas. • Reason: E112 has a filled 6d107s2 electronic shell configuration Relativistic effects • High atomic number: strong Coulomb attraction causes electrons to move faster. • Causes relativistic mass increase [m=m0(1-b2)], with b=v/c; and, as a consequence, contraction of spherical orbitals (ns, np1/2) • Energy levels of spherical orbitals are increased • Energy levels of high angular momentum orbitals are destabilized due to shielding effects by spherical orbitals • Strong spin-orbit splitting Courtesy:P. Schwerdtfeger Example: the relativistic 6s/7s contraction in Au and Rg 0.5 4 r 2 (r) h2 h2 v2 aB = = 1 2 = aB0 2 2 mc m0 c c 7s R 0.4 v2 1 2 c Consequence: Cu, Ag, Au nd10(n+1)s1 6s R Zn+,Cd+,Hg+ however: Rg, 112+ nd9(n+1)s2 (2D5/2) 0.3 6s NR 0.2 7s NR 0.1 r (a.u.) 0.0 0 1 2 3 4 5 6 7 E.Eliav, U.Kaldor, P.Schwerdtfeger, B.Hess, Y.Ishikawa, Phys. Rev. Lett. 73, 3203 (1994). M.Seth, P.Schwerdtfeger, M.Dolg, K.Faegri, B.A.Hess, U.Kaldor, Chem. Phys. Lett. 250, 461 (1996). Relativistic Effects P. Pyykkö direct effect (contraction) indirect effect (expansion) relativistic nonrelativistic M.Kaupp, Spektrum der Wissenschaften, 2005 How to experimentally determine a metallic character of a volatile element at a single atom level? → Determine interaction energy (adsorption enthalpy) with noble metals (e.g. Au) → If metallic: strong interaction (adsorption enthalpy) if non-metallic (noble gas like): weak interaction Metal Surface Surface: Gold 50 500 45 450 Hg-192 Hads = -87 kJ/mol 400 Rn-219 Hads = -27 kJ/mol 35 350 30 300 25 250 20 200 15 150 10 100 5 50 0 0 1 3 5 7 9 11 13 15 17 19 lenght [cm] 21 23 25 27 29 31 temperature [K] yield [%] 40 Quartz Surface 60 Hg-192 Hads = -24.5 kJ/mol Rn-219 Hads = -20.5 kJ/mol 400 350 40 yield [%] 450 300 30 Tdep. Tl, Po, Pb, Bi ≥ 500 K 20 250 200 150 100 10 50 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 lenght [cm] temperature [K] 50 500 The EPIPHANIOMETER (Teflon) for 211Pb (via 211Bi) 219Rn 211Pb No 211Pb detected for clean gas (no aerosol particles) H.W. Gäggeler et al., J. Aerosol Sci., 20, 557 (1989) Application to atmospheric aerosol detection at exotic sites The element 112,114 experiments (IVO Technique) Beam (48Ca) Window/ Target (242,244Pu) Recoil chamber Teflon capillary SiO2-Filter Ta metal 850°C Beam stop Quartz inlay Cryo On-line Detector (4 COLD) (32 pairs PIN diodes, one side gold covered) Hg Quartz column 112,114? Loop Rn Temperature gradient: 35°C to – 180 °C T Carrier gas He/Ar (70/30) l The E112 experiments in 2006/2007 Reported at FLNR: 291116 Oganessian et al. 2004 6.3 ms 10.7 MeV 287114 0.51 s 10.02 MeV 283112 Observed in Chemistry: 242Pu (48Ca, 3n) 287114 6.2•1018 48Ca during eff. 32 days (8 weeks absolute) 283112 283112 283112 283112 283112 9.38 MeV 9.47 MeV 9.52 MeV 9.35 MeV 9.52 MeV 4s 9.54 MeV 279Ds 279Ds 279Ds 279Ds 279Ds 279Ds 0.18 s SF(>90%) 205 MeV t: 0.592 s SF t: 0.536 s SF t: 0.072 s SF t: 0.773 s SF t: 0.088 s SF 112+n.d. MeV 85+12 MeV 94+51 MeV 108+123 MeV 127+105 MeV NR <1E-5 NR =0.05 Monte Carlo simulation Results for one single component 50 50 185 40 ice gold Hg 30 50 Rn 20 -50 20 ice gold 0 219 (-28°C) 30 -50 283 -100 112 -100 10 10 -150 -150 -200 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 50 185 40 Hg gold 50 ice 219 30 Rn 0 -50 20 (-5°C) -100 10 -150 0 -200 Temperature, °C Rel. yield / detector, % Rel. yield / detector, % 0 30 gold 40 30 20 gas flow ice 0 20 283 -50 112 -52+4 10 -3 kJ/mol 50 219 Hg (-21°C) (-39°C) Rn 0 -200 30 gold ice -50 10 -100 -50 112 -100 10 -150 0 -200 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 Detector # 50 0 20 283 (-124°C) -100 -150 0 185 50 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 50 ice -200 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 gold 0 -150 0 -200 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 Courtesy: R. Eichler Detector # Temperature, °C Experiment 250 Po Pb experimantal data least square fit: 95% c.i. Tl Bi -DHads(Au), kJ/mol 200 150 Hg 100 At Xe 50 Rn -DHads(Au) = (1.08±0.05)*DHsubl+(10.3±6.4), kJ/mol Kr 0 0 50 100 150 DHsubl, kJ/mol 200 250 Trend of sublimation enthalpy within group 12 160 Zn 140 DHsubl, kJ/mol 120 Cd 100 Hg 80 60 40 112 20 0 0 20 40 60 Z 80 100 120 Production of E114 242Pu (48Ca, 244Pu (48Ca, 3n) 287114 3-4n) 288-289114 287114 288114 289114 0.51 s 10.02 MeV 0.8 s 2.6 s 9.95 MeV 9.82 MeV 283112 284112 285112 4s 0.097 s SF 29 s 9.54 MeV 279Ds 281Ds 0.2 s SF 11 s SF 9.16 MeV Yu.Ts. Oganessian et al., 2004 120 DH°298 [kcal/mol] Standard enthalpies of gaseous monoatomic elements 100 80 60 40 20 0 0 20 40 60 80 100 120 Atomic number B. Eichler, 1974 Results with element 114 Dubna 2007 - 2008 244Pu (48Ca, 3-4n) 288-289114 242Pu (48Ca, 3n) 287114 3.1•1018 48Ca during 16 days 283112 t: 10.93 s a 9.53 1.43•1019 48Ca during 51 days 287114 288114 288114 10.04 MeV 9.95 MeV 9.81 MeV 284112 Det#4 285112 284112 t: 0.11 s SF 62+n.d. NR=1.5E-3 279Ds t: 0.242 s SF 114+103 NR=2E-2 NR=1.1E-2 t: 0.10 s SF 108+n.d. Det#6 281Ds t: 3.38 s SF 106+44 NR=1.8E-3 9.20 MeV 289114 15 12 9 6 3 0 15 12 9 6 3 0 15 12 9 6 3 0 287 114 gold ice -88°C -4°C 288 ( 114) 288 50 0 -50 -100 -150 -200 114 -90°C 289 285 ( 114--> 112) Z=112 50 0 -50 -100 -150 -200 -93°C 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 Detector # 50 0 -50 -100 -150 -200 Temperature, °C Rel. yield / detector, % Results (2007/2008) Prediction and exp. result Dubna 2007/2008 250 E114 M 150 -D H M ads 200 B. Eichler 2003 R. Eichler et al. 2002 V.Pershina et al 2008 100 50 E114 G 114Exp(2007/2008) 0 Cu Ag Au metal Pd Ni Strong stabilization of elemental 6d107s27p1/22 atomic state! How to interpret low adsorption enthalpy of E114? Unexpected observation: E114 significantly different to Pb and even more volatile than E112. Calculated van der Waals energies using covalent radii1, polarizabilities2 and ionisation potentials2 1P.Pyykkö, 2 M. Atsumi, Chem.Eur. J., 2009, 15, 186 E=114: C. Thierfelder, B. Assadollahzadeh, P. Schwerdtfeger, S. Schäfer, R. Schäfer, Phys. Rev. A 78, 052506 (2008) E=112: V.Pershina, A. Borschevsky, E. Eliav, U. Kaldor, J. Chem. Phys. 128, 024707 (2008) E112 on Au: -30 kJ/Mol; exp.: -52 kJ/Mol E114 on Au: -23 kJ/Mol; exp.: -34 kJ/Mol (Rn on Au: - 24 kJ/Mol; exp.: -27 kJ/Mol) Courtesy: R. Eichler Conclusion - On-line gas phase chemistry has reached the sensitivity of about 1 pb - Month-long beam times at highest possible beam intensities mandatory for chemical studies - Single atom chemistry yields reliable chemical information - Elements 112 and 114 surprisingly volatile - Next: element 113 (eka-Tl). Expected volatility of At. - Far future: chemistry from actually s-range to ms-range? (e.g. Stern-Gerlach experiment for atomic electronic configuration) [Proposal E.K. Hulet] Acknowledgement - Excerpt for Z=112/114 studies PSI team: R. Eichler et al. FLNR chemistry: S. Dmitriev, S. Shishkin FLNR GNS team: V.K. Utyonkov et al. FLNR VASSILISSA team: A.V. Yeremin et al. FLNR support: Yu. Ts. Oganessian LLNR target: K.J.Moody et al. Adsorption of E112 on Au -DH M ads , kJ/mol 120 E112 Metal 100 80 Tdep °C Hg 140 100 E112calc 25 60 -52+4 -3 kJ/mol Rn E112 Gas 40 20 0 Cu Ag Au metal Pd -180 B. Eichler 1985 B. Eichler 2003 Ni V. Pershina et al. 2005/08 R. Eichler et al. 2002 R. Eichler et al. 2002 Eichler, R. et al. Nature 487, 72 (2007) Result can be used to improve the prediction models