Transcript Document
Electrochemical Reduction of TCEP-resistant Disulphide Bonds For use in Hydrogen/Deuterium exchange monitored by Mass Spectrometry Simon Mysling, Thomas J. D. Jørgensen University of Southern Denmark Protein Research Group June 12th 2013 H/D exchange: New Developments in Technology The 61st annual ASMS conference Disulphide bond reduction in HDX experiments Important step when analyzing disulphide bond-containing proteins R–S–S–R to R–SH HS–R Improve proteolytic digestion Improve sequence coverage (previously disulphide-linked peptides observable) Reduction should be rapid, and run a quench conditions - pH 2.5, 0°C Chemical reductant Tris(2-carboxyethyl)phosphine (TCEP) Spike sample with reductant and incubate prior to injection Reduction at quench conditions using TCEP TCEP efficiency is severely reduced at pH 2.5 High concentrations pH 2.5 Accumulation in RP columns Extensive washing Cline, D. J.; Thorpe, C. Biochemistry 2004, 43, 15195 On-column accumulation of TCEP Three consecutive injections with 400 mM TCEP 100 pmol uPAR wt (A) 100s exchange-in rep 2 - Q PBS and 400 mM TCEP for 2 min (120 ul) - Pepsin column QS04855SM 1: TOF MS ES+ BPI 290 Injection 1 % 100 0 2.00 QS04857SM 4.00 6.00 8.00 10.00 12.00 14.00 16.00 1: TOF MS ES+ BPI 318 Injection 2 % 100 0 2.00 QS04859SM 4.00 6.00 8.00 10.00 12.00 14.00 16.00 1: TOF MS ES+ BPI 451 Injection 3 % 100 0 2.00 Time 4.00 6.00 8.00 10.00 12.00 14.00 16.00 On-column accumulation of TCEP Three consecutive injections with 400 mM TCEP 100 pmol uPAR wt (A) 1000s exchange-in rep21 - Q PBS and 40 QS04859SM 955 (8.695) Cm (955:1084) 1: TOF MS ES+ 1.97e4 647.14 100 355.03 100 pmol uPAR wt (A) 100s exchange-in rep 2 - Q PBS and 400 mM TCEP for 2 min (120 ul) - Pepsin column QS04855SM Injection 1 % % 100 1: TOF MS ES+ BPI 290 0 400 0 2.00 QS04857SM 4.00 6.00 8.00 10.00 800 m/z 1200 1000 100 pmol uPAR wt (A) 1000s exchange-in rep21 - Q PBS and 40 12.00 955 (8.695)14.00 16.00 1: TOF MS ES+ QS04859SM Cm (955:1084) 1: TOF MS ES+ 647.14 1.97e4 100 BPI 318 Injection 2 % % 100 0 2.00 QS04859SM 600 4.00 6.00 8.00 10.00 012.00 645 14.00 650 655 660 16.00 665 TOF MS 670 1: 675 680 ES+ 685 m/z 690 Injection 3 BPI 100 pmol uPAR wt (A) 1000s exchange-in rep21451 - Q PBS and 40 100 QS04859SM 955 (8.695) Cm (955:1084) % 100 1: TOF MS ES+ 1.53e3 661.14 675.15 4.00 6.00 8.00 10.00 Time 663.13 % 0 2.00 12.00 14.00 16.00 677.13 679.12 0 660 665 670 675 m/z 680 Reduction at quench conditions using TCEP TCEP efficiency is severely reduced at pH 2.5 High concentrations pH 2.5 Accumulation in RP columns Extensive washing Some disulphide bonds are less vulnerable to TCEP reduction Difficult to analyze using HDX-MS Cline, D. J.; Thorpe, C. Biochemistry 2004, 43, 15195 Insulin Reduction Chain A SS HH + Chain B H S S H S H H S Reduction of Insulin using TCEP Quench conditions - 0°C and pH 2.5 Insulin MH6+ Insulin MH6+ Chain B MH5+ Chain B MH4+ Insulin MH6+ Insulin MH5+ 400 mM TCEP 2 min. incubation Insulin MH4+ Insulin MH5+ Insulin MH4+ Insulin MH5+ Insulin MH4+ 400 mM TCEP 10 min. incubation Reduction of Insulin using TCEP Quench conditions - 0°C and pH 2.5 Insulin MH6+ Chain B MH4+ Chain B MH5+ Chain B MH4+ Insulin MH6+ Insulin MH6+ Insulin MH5+ 400 mM TCEP 2 min. incubation Insulin MH4+ Insulin MH5+ Insulin MH4+ Insulin MH5+ Insulin MH4+ 10 min. incubation less than 5% reduction 50 min. Incubation ~15-20% reduction 400 mM TCEP 10 min. incubation Reduction of Insulin using TCEP Quench conditions - 0°C and pH 2.5 Insulin MH6+ Chain B MH4+ Chain B MH5+ Chain B MH4+ Insulin MH6+ Insulin MH6+ Insulin MH5+ 400 mM TCEP 2 min. incubation Insulin MH4+ Insulin MH5+ Insulin MH4+ Insulin MH5+ 400 mM TCEP 10 min. incubation 400 mM TCEP 50 min. incubation Insulin MH4+ 10 min. incubation less than 5% reduction 50 min. Incubation less than 20% reduction Reduction at quench conditions using TCEP TCEP efficiency is severely reduced at pH 2.5 High concentrations pH 2.5 Accumulation in RP columns Extensive washing Some disulphide bonds are less vulnerable to TCEP reduction Difficult to analyze using HDX-MS Alternative reduction methods could be valuable in many situations Cline, D. J.; Thorpe, C. Biochemistry 2004, 43, 15195 Electrochemical reduction cell Reference electrode Able to reduce insulin efficiently, using direct infusion Solvent flow 12 uL internal volume Running conditions 50 bar (725 PSI) pressure limit 1% FA in solvent Working Electrode Injection Trap and analytical column – 0.2°C Is electrochemical reduction, at quench conditions: Digestion chamber – 10°C Reduction cell From loop To desalting trap - Still efficient? - Going to increase backexchange markedly? - Stable and reproducible? Pepsin column Electrochemical reduction of insulin Insulin MH5+ Relative intensity [AU] Insulin MH6+ Chain B MH5+ Cell off 100 μL/min. Cell on 100 μL/min. Chain B MH4+ Insulin MH6+ Insulin MH5+ Residence time: 7.2 s. Chain B MH5+ Chain B MH4+ Chain A MH3+ m/z [Th] Electrochemical reduction of insulin Insulin MH5+ Relative intensity [AU] Insulin MH6+ Chain B MH5+ Cell off 100 μL/min. Cell on 100 μL/min. Chain B MH4+ Insulin MH6+ Insulin MH5+ Residence time: 7.2 s. Chain B MH5+ Chain B MH4+ Chain A MH3+ m/z [Th] Electrochemical reduction of insulin Insulin MH5+ Relative intensity [AU] Insulin MH6+ Reduction efficiency is dependent on residence time (Flow rate) Chain B MH5+ Cell on 100 μL/min. Chain B MH4+ Insulin MH6+ Chain B MH5+ Cell off 100 μL/min. Insulin MH5+ Residence time: 7.2 s. Cell on 50 μL/min. Chain B MH4+ Chain A MH3+ Residence time: 14.4 s. m/z [Th] Tweak reduction using the desalting flow rate Impact on deuterium back-exchange Labeled insulin B-chain Deuterons 25 Theoretical maximum 20 Observed 15 10 5 0 Deuterons 16.1 14.3 12.9 28.0% 36.0% 42.2% Cell active X X O Cell present X X O Buffer 0.23% FA 1% FA 1% FA Desalting 0.5 min. 300 ul/min 3 min. 50 ul/min 3 min. 50 ul/min Back-exchange Impact on deuterium back-exchange Labeled insulin B-chain Deuterons 25 Theoretical maximum 20 Observed 15 10 5 0 Deuterons 16.1 14.3 12.9 28.0% 36.0% 42.2% Cell active X X O Cell present X X O Buffer 0.23% FA 1% FA 1% FA Desalting 0.5 min. 300 ul/min 3 min. 50 ul/min 3 min. 50 ul/min Back-exchange Impact on deuterium back-exchange Labeled insulin B-chain Deuterons 25 Theoretical maximum 20 Observed 15 10 5 0 Deuterons 16.1 14.3 12.9 28.0% 36.0% 42.2% Cell active X X O Cell present X X O Buffer 0.23% FA 1% FA 1% FA Desalting 0.5 min. 300 ul/min 3 min. 50 ul/min 3 min. 50 ul/min Back-exchange Main contributors to back-exchange Increase desalting time Non-cooled cell in flowpath Other observations PBS and ammonium acetate had a negative impact on the reduction - Alleviated by diluting samples 10x when quenching exchange - Other buffers could have less dramatic effects Placing the reduction cell within a cooled environment: - Considerable decrease in reduction efficiency - Only slightly improved deuterium backexchange Electrochemical reduction was not found to alter deuteration patterns Insulin hexamers T6 hexamers Stable assemblies R6 hexamers Very stable assemblies T6 hexamers R6 hexamers Chain B Chain B Undeuterated 91 686 687 688 689 690 91 686 687 688 689 690 91 686 687 688 689 91 686 687 688 91 686 687 688 Undeuterated 691 686 687 688 10s exchange-in 689 690 691 691 686 687 688 689 690 691 690 691 686 687 688 689 690 691 689 690 691 686 687 688 689 690 691 689 690 691 686 687 688 689 690 100s exchange-in 1000s exchange-in Full exchange m/z [Th] T6 hexamer Full deut. 10s exchange-in 100s exchange-in 1000s exchange-in Full exchange 691 T6 hexamers R6 hexamers Chain B Chain B Undeuterated 91 686 687 688 689 690 91 686 687 688 689 690 91 686 687 688 689 91 686 687 688 91 686 687 688 Undeuterated 691 686 687 688 10s exchange-in 689 690 691 691 686 687 688 689 690 691 690 691 686 687 688 689 690 691 689 690 691 686 687 688 689 690 691 689 690 691 686 687 688 689 690 100s exchange-in 1000s exchange-in Full exchange m/z [Th] T6 hexamer Full deut. 10s exchange-in 100s exchange-in 1000s exchange-in Full exchange 691 T6 hexamers R6 hexamers Chain B Chain B Undeuterated 91 686 687 688 689 690 91 686 687 688 689 690 91 686 687 688 689 91 686 687 688 91 686 687 688 Undeuterated 691 686 687 688 10s exchange-in 689 690 691 691 686 687 688 689 690 691 690 691 686 687 688 689 690 691 689 690 691 686 687 688 689 690 691 689 690 691 686 687 688 689 690 100s exchange-in 1000s exchange-in Full exchange m/z [Th] T6 hexamer Full deut. 10s exchange-in 100s exchange-in 1000s exchange-in Full exchange 691 T6 hexamers R6 hexamers Chain B Chain B Undeuterated 91 686 687 688 689 690 91 686 687 688 689 690 91 686 687 688 689 91 686 687 688 91 686 687 688 Undeuterated 691 686 687 688 10s exchange-in 689 690 691 691 686 687 688 689 690 691 690 691 686 687 688 689 690 691 689 690 691 686 687 688 689 690 691 689 690 691 686 687 688 689 690 100s exchange-in 1000s exchange-in Full exchange m/z [Th] T6 hexamer Full deut. 10s exchange-in 100s exchange-in 1000s exchange-in Full exchange 691 T6 hexamers R6 hexamers Chain B Chain B Undeuterated 91 686 687 688 689 690 691 686 687 688 689 690 90° 691 91 686 687 688 689 690 691 686 687 688 689 690 691 91 686 687 688 689 690 691 686 687 688 689 690 691 91 686 687 688 689 690 691 686 687 688 689 690 691 91 686 687 688 689 690 691 686 687 688 689 690 691 10s exchange-in 100s exchange-in 1000s exchange-in Full reflecting the stability EX-1 exchange kinetics ofexchange insulin hexamers m/z [Th] T6 hexamer Full deut. Acknowledgements Protein Research Group University of Southern Denmark Thomas J. D. Jørgensen Morten Beck Trelle Sabine Amon Novozymes, DK Rune Salbo Antec, NL Agnieszka Kraj Finsenlaboratory, DK Michael Ploug Biolab, DK Kim Stjerne Britta Gribsholt Funding The Lundbeck Foundation