Transcript Slide 1
Carbonyl Ligands - C≡O Examples of neutral, binary metal carbonyls: 4 Ti 5 V(CO)6 6 Cr(CO)6 7 Mn2(CO)10 8 9 Fe(CO)5 Co2(CO)8 Fe2(CO)9 Co4(CO)12 10 11 Ni(CO)4 Cu Fe3(CO)12 Nb Mo(CO)6 Tc2(CO)10 Zr Hf Ta W(CO)6 Re2(CO)10 Ru(CO)5 Rh4(CO)12 Ru3(CO)12 Rh6(CO)16 Pd Ag Os(CO)5 Ir4(CO)12 Pt Au Os3(CO)12 Molecular Orbital (MO) Diagram Experimental Data Supporting Nature of MO’s in CO Species CO CO* Config (5s)2 (5s)1 (5s)1(2p)1 C-O Å 1.13 1.11 S 1.24 T 1.21 nCO cm-1 2143 2184 1489 1715 Comment 5s MO is weakly antibonding 2p MO is strongly antibonding Three types (two of which are important) of CO-Metal bonding interactions: M-C bond: increases increases increases C-O bond: increases decreases decreases nCO freq: increases decreases decreases Carbonyl Infrared (IR) Stretching Frequencies • The position of the carbonyl bands in the IR depends mainly on the bonding mode of the CO (terminal, bridging) and the amount of electron density on the metal being p-backbonded to the CO. • The number (and intensity) of the carbonyl bands observed depends on the number of CO ligands present and the symmetry of the metal complex. There are also secondary effects such as Fermi resonance and overtone interactions that can complicate carbonyl IR spectra. O C O C M M nCO IR (cm -1 ) O O C C M M M M free CO terminal mode 2 bridging 3 bridging 2143 2120 - 1850 1850 - 1720 1730 - 1500 (for neutral metal complexes) Electronic Effects on nCO As the electron density on a metal center increases, more pbackbonding to the CO ligand(s) takes place. This further weakens the C-O bond by pumping more electron density into the formally empty carbonyl p* orbital. This increases the M-CO bond strength making it more double-bond-like, i.e., the resonance structure M=C=O assumes more importance. dx d 10 d6 Complex nCO cm-1 free CO 2143 [Ag(CO)]+ 2204 Ni(CO)4 2060 [Co(CO)4]- 1890 [Fe(CO)4]2- 1790 [Mn(CO)6]+ 2090 Cr(CO)6 2000 [V(CO)6]- 1860 Ph2 Ph 2 P OC OC P Fe Fe C O C O O C CO CO OC C O 2100 2000 1900 -1 ) Wave num be rs (cm 1800 2- Ph 2 P Fe C Fe P Ph 2 O CO C O O C OC Ni 2( -CO)(CO) 2(dppm) 2 Ni CO Ni P -CO +CO Ni 2(CO) 4(dppm) 2 OC OC P P P P P Ni Ni P -CO P +CO P 2 Ni(CO) 3( -dppm) OC 1 OC Ni C O 2000 1900 1800 Wavenumbers (cm -1) 1700 P CO CO Ligand Electronic Effects on nCO nCO cm-1 Complex Mo(CO)3(PF3)3 2090, 2055 Mo(CO)3(PCl3)3 2040, 1991 Mo(CO)3[P(OMe)3]3 1977, 1888 Mo(CO)3(PPh3)3 1934, 1835 Mo(CO)3(NCCH3)3 1915, 1783 Mo(CO)3(triamine)3 1898, 1758 Mo(CO)3(pyridine)3 1888, 1746 Based on CO IR stretching frequencies, the following ligands can be ranked from best p-acceptor to worst: NO+ > CO > PF3 > RNC > PCl3 > P(OR)3 > PR3 > RCN > NH3 Semi-Bridging Carbonyls ~ 150 Unsymmetrical bridging form. p* system accepts electron density from second metal center. Distortions away from a linear M-CO (180°) or a symmetrically bridging CO (120°). Typical M-CO angle around 150° (but with considerable variations). O C M M filled Fe d orbital O O C C O Fe C C Cotton & Troup JACS, 1974, 96, 1233 Fe N C O O C N O CO p* empty antibonding acceptor orbital s/p Bridging CO’s O C M O O C C M M M M M M CO acting as p-donor or p-acceptor? 1.30Å 2.22Å O C C C Nb Nb Cp O 2.25Å O C O Cp Nb C O 1.97Å Cp C O C M O Herrman & coworkers JACS, 1981, 103, 1692 Problem: Which of the following metal carbonyl IR spectra represents the compound with the least amount of electron density on the metal center? Briefly discuss the reasoning for your choice. Which compound will lose CO the easiest? Problem: Which of the following metal carbonyl compounds will have the highest nCO stretching frequency in the IR? Why? Will this be the most electron-rich or deficient compound? a) b) CO F Ir F CO Br CO CO Ir Br F CO Br c) CO Me2N Me2N Ir CO CO NMe2 CO