Vibrations Tutorial

Download Report

Transcript Vibrations Tutorial

AE 2403 VIBRATIONS AND
ELEMENTS OF AEROELASTICITY
BY
Mr. G.BALAJI
DEPARTMENT OF AERONAUTICAL ENGINEERING
REC,CHENNAI
Fundamentals of Linear Vibrations
1.
2.
3.
4.
Single Degree-of-Freedom Systems
Two Degree-of-Freedom Systems
Multi-DOF Systems
Continuous Systems
Single Degree-of-Freedom Systems
1. A spring-mass system
General solution for any simple oscillator
General approach
Examples
2. Equivalent springs
Spring in series and in parallel
Examples
3. Energy Methods
Strain energy & kinetic energy
Work-energy statement
Conservation of energy and example
A spring-mass system
Governing equation of motion:
General solution for any simple oscillator:
x(t )  xo cos( nt ) 
mx  kx  0
vo
sin( nt )
n
where:
x o  initial displacement; v o  initial velocity  x o ; t  time (sec.)
ωn 
k
2π
 natural frequency (rads/sec. ) 
; T  period of vibration
m
T
v 
1
ω
fn  frequency (cycles/se c. or Hz) 
 n ; C  amplitude  x 2o   o 
T
2π
 ωn 
2
Any simple oscillator
General approach:
1.
2.
3.
4.
Select coordinate system
Apply small displacement
Draw FBD
Apply Newton’s Laws:
d
F 
( mx )
dt
d
M 
( I)
dt
Simple oscillator – Example 1
I  mass moment of inertia
 I cg  md 2  ml 2
ωn 
K
ml 2
 M  I
 K  I
+
ml   K  0
2
Simple oscillator – Example 2
I  I cg  md 2  ml 2
 M o  I o
k a
 
m l 
 (ka)a  ml 2
ωn 
Note limits: When
a
k
 1, ωn 
l
m
a
As
 0, ωn  0 (unstable)
l
+
2


ml   ka   0
2
Simple oscillator – Example 3
I cg   r 2 dm  2  x 2 Adx
l/2
0
Al
ml


12
12
 I cg  md 2
3
Io
2
 M o  I o
2
2
ml 2
ml 2
 m

 m  
12
3
2
3k  b 
ωn 
 
ml
+
ml 
 (kb)b 

3
2
ml 
  kb 2  0
3
Simple oscillator – Example 4
ma 2
From table : I 
2
TL
 JG 

 
  T
JG
 L 
Equivalent stiffness: K 
 n2 
2GJ
ma 2 L
 M z  I
 T  I
JG
L
+
ma 2  GJ
   0
2
L
Equivalent springs
Springs in series:
same force - flexibilities add
1
1

 P
  1   2   
 k1 k 2 
 ( f1  f 2 ) P  f eq P
f eq  f1  f 2
Springs in parallel:
same displacement - stiffnesses add
P  k1  k 2 
 ( k1  k 2 )   keq 
keq  k1  k 2
Equivalent springs – Example 1
mx  K eq x  0
 12EI 3EI 
mx   3  3  x  0
L2 
 L1
Equivalent springs – Example 2
2
ka
 Wl
2
ωn 
ml 2
n  n ( a )
Consider:
ka2 > Wl
ka2 = Wl
ka2 < Wl
 M o  I o
+
 ( ka )a  Wl  ml 2
2 
2
ml    ( ka  Wl )  0
n2 is positive - vibration is stable
statics - stays in stable equilibrium
unstable - collapses
Equivalent springs – Example 3
We cannot define n
 M o  I o
If  < < 1, sin   :
 Wl sin  ml 2
2 
ml   mgl sin  0
since we have sin term
g


   0
l
g
ωn 
l
+
g


  sin  0
l
Energy methods
Strain energy U:
energy in spring = work done
1 2 1
U  k  P
2
2
Conservation of energy:
work done = energy stored
Kinetic energy T:
1  
T  mr  r
2
 
Increment of work done  F  dr
 
 
1
 (mr)  (rdt)  d( 2 mr  r)  dT
 increment of kinetic energy T
Work-Energy principles
Work done = Change in kinetic energy

r2

r1

 
F  dr 
T2
T
1
dT  T2  T1
Conservation of energy for conservative systems
E = total energy = T + U = constant
Energy methods – Example
Work-energy principles have many
uses, but one of the most useful is
to derive the equations of motion.
Conservation of energy: E = const.
1
U  kx 2
2
1 2
T  mx
2
1 2 1 2
E  U  T  kx  mx
2
2
d
(E)0
dt
kxx  mxx  0
mx  kx  0
Same as vector mechanics
Two Degree-of-Freedom Systems
1. Model problem
Matrix form of governing equation
Special case: Undamped free vibrations
Examples
2. Transformation of coordinates
Inertially & elastically coupled/uncoupled
General approach: Modal equations
Example
3. Response to harmonic forces
Model equation
Special case: Undamped system
Two-DOF model problem
Matrix form of governing equation:
m1 0   x1  (c1  c2 )  c2   x1  (k1  k2 )  k2   x1   P1 
 
  
 0 m  x     c


c2   x2    k2
k2   x2   P2 


2  2 
2
where:
[M] = mass matrix;
[C] = damping matrix;
[K] = stiffness matrix;
{P} = force vector
Note: Matrices have positive diagonals and are symmetric.
Undamped free vibrations
Zero damping matrix [C] and force vector {P}
Assumed general solutions:
Characteristic equation:
 x1   A1 
     cos(t   )
 x2   A2 
(k1  k2  m1 2 )
  A1  0
 k2
 

2 
 k2
(k2  m2 )  A2  0

Characteristic polynomial (for det[ ]=0):
 k1  k 2 k 2  2 k1k 2
 
  

0
m2 
m1m2
 m1
4
Eigenvalues (characteristic values):
1
2

2






1  k  k2 k2
k1  k 2 k 2
4k1k 2



1  12   1







2  m1
m2    m1
m2 
m1m2  
2
2


Undamped free vibrations
Special case when k1=k2=k and m1=m2=m
Eigenvalues and frequencies:
12  0.3819 k
1   2   

2
.
618

2

m
 1
ω1  0.618
T

2π
ω
k
 fundamental frequency
m
 fundamental period
Two mode shapes (relative participation of each mass in the motion):
st
1 mode shape
A2 2k  m 2 1.618


A1
k
1
2nd mode shape
A2
k
 0.618


A1 k  m 2
1
The two eigenvectors are orthogonal:
 A1(1)   1 
Eigenvector (1) =  (1)   

1
.
618
A

 2  
 A1( 2 )   1 
Eigenvector (2) =  ( 2 )   


0
.
618
A

 2  
Undamped free vibrations (UFV)
Single-DOF:
x(t )  C cos(nt   )
For two-DOF:
 A1(1) 
 A1( 2) 
 x1 (t ) 
x     C1  (1)  cos(1t  1 )  C2  ( 2)  cos( 2t  2 )
 x2 (t )
 A2 
 A2 
For any set of initial conditions:
We know {A}(1) and {A}(2), 1 and 2
Must find C1, C2,
1, and 2 – Need 4 I.C.’s
UFV – Example 1
Given:
x  0
 1.0 
and xo    

1
.
618


No phase angle since initial velocity is 0:
 x1 
 1.0 
 1.0 
x     C1 
 cos(1t )  C2 
 cos( 2t )
1.618
 0.618
 x2 
From the initial displacement:
xo    
1.0 
 1.0 
 1.0 

C

C



1
2
1
.
618
1
.
618

0
.
618






C1   ; C2  0;

T1 
2
1
UFV – Example 2
1
Now both modes are involved: x  0 and xo     
2
From the given initial displacement:
1  C1 
1
 1 
 1   1
xo       C1 
  C2 

 C 
2
1
.
618

0
.
618
1
.
618

0
.
618
 



 
 2 
Solve for C1 and C2:
C1 
 0.618  1 1
 1.171 
1



 


  1.618 1  2
C

0
.
171

0
.
618

1
.
618

 


 2
Hence,
 1 
 1 
x  (1.171) 
 cos(1t )  (0.171) 
 cos( 2t )
1.618
 0.618
or
x1 (t )  1.171  (1) cos(1t )  0.171  (1) cos( 2t )
x2 (t )  1.171  (1.618) cos(1t )  0.171  (0.618) cos( 2t )
Note: More contribution from mode 1
Transformation of coordinates
UFV model problem:
“inertially uncoupled”
m1 0   x1  (k1  k2 )  k2   x1  0
  
 0 m  x     k

k2   x2  0
2  2 
2


“elastically coupled”
Introduce a new pair of coordinates that represents spring stretch:
or
z1(t) = x1(t)
= stretch of spring 1
z2(t) = x2(t) - x1(t) = stretch of spring 2
x1(t) = z1(t)
x2(t) = z1(t) + z2(t)
Substituting maintains symmetry:
(m1  m2 ) m2   z1  k1 0   z1  0
 
  
 m


m2  z2   0 k2   z2  0
2

“inertially coupled”
“elastically uncoupled”
Transformation of coordinates
We have found that we can select coordinates so that:
1) Inertially coupled, elastically uncoupled, or
2) Inertially uncoupled, elastically coupled.
Big question: Can we select coordinates so that both are uncoupled?
Notes in natural coordinates:
Eigenvecto rs (modal vectors) :
 A1(1)   1 
u1   (1)   

1
.
618
A

 2  
 A1( 2)   1 
u2    ( 2)   


0
.
618
A

 2  
The eigenvectors are orthogonal w.r.t [M]:
The modal vectors are orthogonal w.r.t [K]:
Algebraic eigenvalue problem:
u1T M  u2   0
u2 T M  u1  0
u1T K  u2   0
u2 T K  u1  0
K u1  1M u1
K u2   2 M u2 
Transformation of coordinates
General approach for solution
Governing equation:
M x  K x  0
Let
x  u1 q1 (t )  u2  q2 (t )
or
 x1 (t )  u11 
u12 

q
(
t
)


   1
 q2 (t )
 x2 (t ) u21 
u22 
(**)
We were calling “A” - Change to u to match Meirovitch
Substitution:
(*)
M  u1 q1 (t )  u2  q2 (t )  K u1 q1 (t )  u2  q2 (t )  0
Modal equations:
u1T (*)
u2 T (*)
 q1 (t )  12 q1 (t )  0 
Known solutions

 q2 (t )   22 q2 (t )  0
Solve for these using initial conditions then substitute into (**).
Transformation - Example
Model problem with:
xo    
1

2
and
xo   
0

0
1)
Solve eigenvalue problem:
u   1 
u12   1 
1  0.618;  11   
and


1
.
618
;

 

2
u
1
.
618

 21  
u22   0.618
2)
Transformation:
x  u1 q1 (t )  u2  q2 (t )
and
1   1 
 1 
 
 q1 (0)  
 q2 (0)
2
1
.
618

0
.
618
  



 q1 (0)   1.171 



q
(
0
)

0
.
171

 2
 
So
and
q
1 (t )  12 q1 (t )  0

2


q
(
t
)


2 q2 (t )  0
 2
 q1 (t )  q1 (0) cos(1t )

q2 (t )  q2 (0) cos( 2t )
 1 
 1 
x  
 1.171  cos(1t )  
(0.171  ) cos( 2t )
1
.
618

0
.
618




As we had before.
More general procedure: “Modal analysis” – do a bit later.
Response to harmonic forces
 F1  i t
M x  C x  K x  F (t )    e
F2 
Model equation:
[M], [C], and [K] are full but symmetric.
Assume:
{F}
not function of time
 X 1 (i )  i t
x  X (i )  
e
 X 2 (i )
Substituting gives:

M   i C   K X (i )  F 



2
Z (i )  2x2 impedance matrix
Hence:

Z (i )1 Z (i ) X (i )  Z (i )1 F 
 X1 
 z22  z12   F1 
1
X     
 F 
2 
X

z
z
z
z

z
11   2 
 2  11 22 12  12
All zij are function of (i ) :
zij   ω2 mij  iω cij  kij
i, j  1, 2
Special case: Undamped system
Zero damping matrix [C]
Entries of impedance matrix [Z]:
z11 ( )  k11  m1 2 ; z22 ( )  k22  m2 2 ; z12 ( )  k12
Substituting for X1 and X2:
(k 22  m2 2 ) F1  k12 F2
X1 
;
(k11  m1 2 )( k 22  m2 2 )  k122
 k12 F1  (k11  m1 2 ) F2
X2 
(k11  m1 2 )( k 22  m2 2 )  k122
For our model problem (k1=k2=k and m1=m2=m), let F2 =0:
(k  m 2 ) F1
X1  2 2
;
m (  12 ) ( 2   22 )
X2 
k F1
m 2 ( 2  12 ) ( 2   22 )
Notes:
1) Denominator originally (-)(-) = (+).
As it passes through 1, changes sign.
2) The plots give both amplitude
and phase angle (either 0o or 180o)
Multi-DOF Systems
1. Model Equation
Notes on matrices
Undamped free vibration: the eigenvalue problem
Normalization of modal matrix [U]
2. General solution procedure
Initial conditions
Applied harmonic force
Multi-DOF model equation
Multi-DOF systems are so similar to two-DOF.
Model equation:
M x  C x  K x  Q
We derive using:
1)
2)
3)
Vector mechanics (Newton or D’ Alembert)
Hamilton's principles
Lagrange's equations
Notes on matrices:
They are square and symmetric.
Kinetic energy :
xT M x
T
U  12 x K  x
T
1
2
Strain energy in spring :
[M] is positive definite (since T is always positive)
[K] is positive semi-definite:


all positive eigenvalues, except for some potentially 0-eigenvalues which
occur during a rigid-body motion.
If restrained/tied down  positive-definite. All positive.
UFV: the eigenvalue problem
Equation of motion:
M q  K q  0
Substitution of
leads to
in terms of the generalized D.O.F. qi
q  u f (t )
f (t )  A1ei t  A2e i t
K u   2 M u
Matrix eigenvalue problem
For more than 2x2, we usually solve using computational techniques.
Total motion for any problem is a linear combination of the natural
modes contained in {u} (i.e. the eigenvectors).
Normalization of modal matrix [U]
We know that:
ui  M  u j  ui  M  u j  C  ij
So far, we pick our
eigenvectors to look like:
Instead, let us try to pick
so that:
T
δij  Kronecker delta
1  Let the 1st
uk    entry be 1
 
1 
 
uk new   uk    

 
uk Tnew M  uk new   2 uk T M  uk   1
Then:
where :
U T M U   I 
and
This is a common technique
for us to use after we have solved
the eigenvalue problem.
1 if i  j

0 if i  j
Do this a row at a time to form [U].
U T K U   
where :
12 0

0  22

  
.
.

.
 0





.  n2 
.
.
.
0
.
.
General solution procedure
Consider the cases of:
1.
2.
3.
Initial excitation qo  and qo 
Harmonic applied force
Arbitrary applied force
For all 3 problems:
1.
2.
Form [K]{u} = 2 [M]{u}
(nxn system)
Solve for all 2 and {u}  [U].
Normalize the eigenvectors w.r.t. mass matrix (optional).
Initial conditions
General solution for any D.O.F.:
q(t )  u1C1 cos(1t  1 )  u2 C2 cos(2t  2 )    un Cn cos(nt  n )
2n constants that we need to determine by 2n conditions on qo i and qo i
Alternative: modal analysis
Displacement vectors:
UFV model equation:
q  U 
q(t )  u11 (t )  u2 2 (t )    un n (t )
M q  K q  0
U T M U η  U T K U η  0
    0
n modal equations: 1  121  0 

2   22 2  0 
  Need initial conditions on ,


not q.
2

n   n n  0 
Initial conditions - Modal analysis
Using displacement vectors:
As a result, initial conditions:
q  U 
U T M  q  U T M U η
η  U T M  q
or
T

ηo   U  M  qo 

T






M  qo 
η

U
 o
   2  0 is:
Since the solution of 
hence we can easily solve for
And then solve
q  U η
C cos( t   ) or

 (t )  o cos( t )  o sin(  t )

( )
1 (t )  (o )1 cos(1t )  o 1 sin( 1t )
1

( )
 n (t )  (o ) n cos( nt )  o n sin(  nt )
n
Applied harmonic force
Driving force {Q} = {Qo}cos(t)
Equation of motion:
Substitution of
M q  K q  Q
q  U η
U  known
η unknown
leads to
and
Q  Qo cos( t )
ω  driving frequency
U T M U η  U T K U η  U T Qo cos( t )  N 
Hence,
T

u1  Qo 
1  2
cos( t )
2
1  
T

u2  Qo 
2  2
cos( t )
2
2  
etc.
then
q  U η
Continuous Systems
1. The axial bar
Displacement field
Energy approach
Equation of motion
2. Examples
General solution - Free vibration
Initial conditions
Applied force
Motion of the base
3. Ritz method – Free vibration
Approximate solution
One-term Ritz approximation
Two-term Ritz approximation
The axial bar
Main objectives:
1.
2.
Use Hamilton’s Principle to derive the equations of motion.
Use HP to construct variational methods of solution.
A = cross-sectional area = uniform
E = modulus of elasticity (MOE)
u = axial displacement
 = mass per volume
Displacement field:
u(x, y, z) = u(x, t)
v(x, y, z) = 0
w(x, y, z) = 0
Energy approach
For the axial bar:
1  u  u E  u 
Uo  strain energy density  12 σ ε  12 (E ε x )ε x   E
   
2  x  x 2  x 
V  potential energy  strain energy  U   U o dV
2
V
T  kinetic energy  mu 
1
2
2
1
2
ρ (Adx)u
2
Hamilton’s principle:
t2
0   (T  V ) dt
t1
t2  L 
 
 u  
0      Adx u u  A E   u  dx dt
t1
0
 x  x
 
 
L
L
 L 
 
u  
u
0       Adx u u 
AE
u  dx  A E u dt    A u u tt12 dx


t1
0
0
x 
x  
x
0
  t
L
t2  L 

 
u  
u
0      A u    AE   u dx  AE
u dt
t1
0

t

x

x

x
0


 
t2
Axial bar - Equation of motion

Hamilton’s principle leads to:
If area A = constant 

 A u     AE u   0
t
x 
x 
2
 2u
2  u

t 2
x 2
where :  
2
E

 F L2 
M 
 L3 
Since x and t are independent, must have both sides equal to a constant.
Separation of variables:

d
2
2
u ( x, t )  X ( x) T (t )
 
X    p   X  0
X  C cos p x    D sin  p x  
T  p 2 T  0
T  A cos( pt )  B sin( pt )
Hence
u ( x, t ) 

X dx 2
d 2T dt 2

 contant  - p 2
X
T
2

 A cos( p t )  B sin( p t ) C cos p x    D sin  p x  
i 1
i
i
i
i
i
i
i
i
Fixed-free bar – General solution
Free vibration:
General solution:
u ( x, t ) 
EBC 
u (0, t ) 
NBC 
xL

u (0)  0
NBC:
AE
xL

 A cos( p t )  B sin( p t ) C
i 1

i
i
i
i
i
0


i 1
i
Di pi

i
i
i
xL

Ci  0
cos pi L   Ai cos( pi t )  Bi sin( pi t )  0
pi L



2
or
3
2
or
(i  1, 3, 5, )
 i x  
 i  t 
 i  t 
sin
A
cos

B
sin







i
 i
2
L
2
L
2
L






i  1, 3, 5, 


0
cos pi x    Di sin  pi x  
i
 p L
Either Di  0 (trivial solution) or cos i   0
  
i 
pi 
2L
For any time dependent problem:
u ( x, t ) 
u
x

 C A cos( p t )  B sin( p t )  0
i 1
u
x
EBC:
u
x
E
= wave speed


5

2
Fixed-free bar – Free vibration
For free vibration:
2
 2u
2  u

2
t
x 2
General solution:
Hence
i E
n 
2L 
 i x 
sin 

2
L


u( x, t )  A( x) cos( n t )
are the frequencies (eigenvalues)
(i  1, 3, 5, )
are the eigenfunctions
Fixed-free bar – Initial conditions
Give entire bar an initial stretch.
Release and compute u(x, t).
Initial conditions:
Initial velocity:
u
t
t 0

0
t 0
0

L
L
 Lo  L 
 i x 
 i x   i x 
x
sin
dx

A
sin
sin
dx

A









i
i
0
2
 2L 
 2L   2L 
 L 
i  1, 3, 
2( Lo  L)
or Ai 
L2
Hence
u
t

 Lo  L 
 i x 

 x   Ai sin 

 2L 
 L 
i  1, 3, 
Initial displacement:
L
 L  L
u ( x, 0)   o
 x and
L



i 
 i x 
 
Bi sin 
 Bi  0
0
 2L 
i  1, 3,  2 L
u ( x, t ) 

L
0
( i  1)
8( Lo  L)
 i x 
x sin 
( 1) 2
 dx 
2 2
i
 2L 
8( Lo  L)
2


i  1, 3, 
( 1)
( i  1)
2
(i  1, 3, )
1
 i x 
 i  t 
sin
cos




i2
 2L 
 2L 
Fixed-free bar – Applied force
Now, B.C’s:
From
we assume:
u (0, t )  0

u

A
E
x  L  Fo sin(  t )


x

2
 2u
2  u

2
t
x 2
u( x, t )  X ( x) sin( n t )
Substituting:

 x 
  x 
u ( x, t )   A1 cos
  A2 sin 
 sin  t 







B.C. at x = 0:
u (0, t )  0
B.C. at x = L:
AE
or
Hence
u
x
xL

 AE
A2 
u ( x, t ) 
A1  0

L 
A 2 cos
 sin(  t )  Fo sin(  t )

L


Fo 
L 
sec

AE



Fo 
L   x 
sec
 sin 
 sin  t 
AE



 

Fixed-free bar – Motion of the base
From
2
 2u
2  u

t 2
x 2
Using our approach from before:

 x 
  x 
u ( x, t )   A1 cos
  A2 sin 
 sin  t 







B.C. at x = 0:
u (0, t )  A1 sin(  t )  U o sin(  t )
B.C. at x = L:
AE
u
x
xL
u
x
xL

0
L 

 A 2  U o tan 
  
 U
  L  A2 
  L 
  o sin 

cos


 sin  t   0

  
  
 
Hence
Resonance at:
A1  U o
  x 
  L    x 
u ( x, t )  U o cos
  tan 
 sin 
 sin  t 





 

 
 L  3
 ,
,

2 2
or

  3 
2L
,
2L
, etc.
Ritz method – Free vibration
Start with Hamilton’s principle after I.B.P. in time:
0
t2
t1
 L 
 
 u  

0   A u u  AE   u  dx dt
 x  x
 
  t
Seek an approximate solution to u(x, t):
In time:
harmonic function

cos(t)
( = n)
In space: X(x) = a11(x)
where: a1
= constant to be determined
1(x) = known function of position
1(x) must satisfy the following:
1.
2.
Satisfy the homogeneous form of the EBC.
u(0) = 0 in this case.
Be sufficiently differentiable as required by HP.
One-term Ritz approximation 1
1 ( x)  x  u ( x, t )  a1 1 ( x) cos( t )  a1 x cos( t )
Also approximate :
u  1 ( x) cos( t )  x cos( t )
Pick :


 L

0     a1  2 A ( x)( x)  AE (1)(1) dx  cos 2 ( t ) dt
t1
 0

L
L
 2   A x 2 dx  a1   A E dx a1
in matrix form:  2 M  a  K a
 0

 0

3
3 E 3
2 AL

 AE L   2  2    2  2
3
L  L
1RITZ  x
Substituting:
t2

Hence
 RITZ 
 EXACT 

3

  1.732
L
L

2L
  1.571
 x 

2
L


1EXACT  sin 

L
Ritz estimate is higher than the exact
Only get one frequency
If we pick a different basis/trial/approximation function 1,
we would get a different result.
One-term Ritz approximation 2
 x 

 2L 
1 ( x)  sin 
What if we pick :

 x 
d1 


cos 
dx 2 L
2
L


u ( x, t )  a1 1 ( x) cos( t )  a1 sin  x 2 L  cos( t )
Also approximate :
Substituting:
t2  L 
 

 u  
0      A u u  AE   u  dx dt
t1
0
 x  x
 
  t
0
t2
t1
Hence
u  1 ( x) cos( t )  sin  x 2 L  cos( t )
2
 L 
 





x

2
2
2 x 
  AE   cos 
 dx  cos 2 ( t ) dt
0 a1   A sin 

 2L 
 2L 
 2 L  

 RITZ 

E
2L



2L
   EXACT
Both mode shape and natural frequency are exact.
But all other functions we pick will never give us a
frequency lower than the exact.
Two-term Ritz approximation
Let : X ( x)  a1 x  a2 x 2
If approximate u  1  x : 0  
t2
t1
If approximate u  x 2 :
In matrix form:
where:
t2 
0 
t1

 M 11
 
 M 21
2




  A
L
0
  A
L
0
2
2
dX
 a1  2a2 x
dx


(a1 x  a2 x 2 ) x  AE (a1  2a2 x)(1) dx dt



(a1 x  a2 x 2 ) x 2  AE (a1  2a2 x)(2 x) dx dt

M 12   a1  E  K11
 
M 22  a2    K 21
L

L3
 M 11  0 ( x)( x)dx 
3

L

L4
2
 M 12  M 21  0 ( x )( x)dx 
4

L

L5
2
2
 M 22  0 ( x )( x )dx 
5

K12   a1 
 
K 22  a2 

L
K

 11 0 (1)(1)dx  L

L

2
K

K

 12
21
0 (2 x)(1)dx  L

3
 K  L (2 x)( 2 x)dx  4 L
22
0

3

Two-term Ritz approximation (cont.)
Substitution of:
leads to
   2 and  2 
 ( 2 L   L3 3)
 2 2
4
( L   L 4)
E

( 2 L2   L4 4)   a1  0
    
2
3
5
( 4 L 3   L 5) a2  0
Solving characteristic polynomial (for det[ ]=0) yields 2 frequencies:
(1 ) RITZ  1.5767  L and (2 ) RITZ  5.67  L
(1 ) EXACT  1.5708  L and ( 2 ) EXACT  4.7123  L
Let a1 = 1:
Mode 1:
 2 L (0.1713 a1  0.3785 L a2 )  0  a2   0.4526 L 
Mode 2:
 2 L2 ( 7.043 a1  5.10 L a2 )  0  a2   1.38 L 
Mode shape 1 :
X 1 ( x)  x  0.4526 x 2 L
Mode shape 2 :
X 2 ( x)  x  1.38 x 2 L