The Life Cycle of Giant Molecular Clouds

Download Report

Transcript The Life Cycle of Giant Molecular Clouds

The Life Cycle of
Giant Molecular Clouds
Charlotte Christensen
Observational Constraints on
The Life Cycle of
Giant Molecular Clouds
in Milky Way-like Galaxies
Charlotte Christensen
Coming up
• Physical Background
• Lifecycle
•
•
•
•
•
Formation
Core Formation
Protostar Formation
Star Formation
Dispersal
• Nagging Questions
Meet the Molecules
Meet the Molecules
HII
Meet the Molecules
HI
Meet the Molecules
H2
Meet the Molecules
12CO
Meet the Molecules
13CO
Meet the Molecules
NH3
3 Phase Interstellar Media
• Hot Ionized Medium
• Warm Neutral/Ionized Medium
• Cold Neutral Medium
3 Phase Interstellar Media
• Hot Ionized Medium
• HII
• T  106 - 107 K
•   10-4 - 10-2 cm-3
• Warm Neutral/Ionized Medium
• Cold Neutral Medium
Haffner et al, 2003
3 Phase Interstellar Media
• Hot Ionized Media
• Warm Neutral/Ionized Media
• HII & HI
• T  6000 -- 12,000K
•   0.01 cm-3
• Cold Neutral Media
Dickey & Lockman, 1990
MW 21cm radiation
3 Phase Interstellar Media
• Hot Ionized Media
• Warm Neutral/Ionized Media
• Cold Neutral Media
• HI & H2
• T  15 -- 100K
•   100 -- 5000 cm-3
MW CO emission
Dame et al, 2001
Molecular Hydrogen Clouds
• Self-gravitating
(rather than diffuse)
• H2, molecules, and
dust grains
• 30 - 60% of the gas
mass
• Occupy > 1% of the
volume
• Site of star formation
Eagle Nebula
HST
Size Scales
Mass (MO)
Size (pc)  (cm-3)
Superclouds /
107
GMAs
Giant Molecular 104 -- 106
Clouds
Molecular Clouds 103 -- 104
--
--
50
100
10
100
Bok Globules
1 -- 1000
1
104
Cores
1 -- 1000
1
104
Size Scales
Mass (MO)
Size (pc)  (cm-3)
Superclouds /
107
GMAs
Giant Molecular 104 -- 106
Clouds
Molecular Clouds 103 -- 104
--
--
50
100
10
100
Bok Globules
1 -- 1000
1
104
Cores
1 -- 1000
1
104
Some Timescales
• Crossing Time
• Time for a sound wave to propagate
through
• c =  10 Myr
• Dynamical Time
• Time for a particle to free fall to center
• dyn = G-1/2  2 Myr
• “Dynamic” vs “Quasi-Static” Evolution
Support
• Assume Equilibrium
• Virial Theorem
Jeans Mass:
2T +W=0
Kinetic Energy
Potential Energy
Support
• Assume Equilibrium
• Outside Pressure
2(T - T0) + W = 0
Kinetic Energy
KE from External Pressure
Potential Energy
Support
• Assume Equilibrium
• Turbulence vs Thermal KE
2(T + TP - T0) + W = 0
Thermal KE
KE from External Pressure
Potential Energy
Turbulent KE
Support
• Assume Equilibrium
• Magnetic Field
Mag. Enegry
2(T + TP - T0) + W + B = 0
Thermal KE
KE from External Pressure
Potential Energy
Turbulent KE
Support
• Assume Equilibrium
• Magnetic Field
Mag. Enegry
2(T + TP - T0) + W + B = 0
Thermal KE
KE from External Pressure
Potential Energy
Turbulent KE
Turbulent Support -Source
• Internal
• Stellar Winds
• Bipolar Outflows
• HII
• External
•
•
•
•
Density Waves
Differential Rotation
Supernovae
Winds from Massive Stars
Turbulent Support -Decay
• Close to a Kolmogrov Spectrum
• Cascade down to lower energies
• Large eddies form small eddies
• Small eddies dissipated through friction
• Timescale:  1 Myr
Magnetic Field Support -Source
• Galactic Dynamo
NGC 6946
• Seed Magnetic Field
• Differential Rotation
• Convection
• Throughout MW
• Seen in polarization
and Zeeman splitting
MPIfR Bonn
Magnetic Field Support -Decay
• Ambipolar Diffusion -- Decoupling of
charged and neutral particles
• Timescale: 10 Myr
• Depends on:
• Density
• Magnetic Flux
• Ionization Fraction
Life Cycle
Cloud Formation
Protostar Collapse
Cloud Core Formation
Cloud Dispersal
Stars Form
Life Cycle
Cloud Formation
Protostar Collapse
Cloud Core Formation
Cloud Dispersal
Stars Form
Theories
• Collisional build up of molecular clouds
• Growth time  collisional time
• Quiescent growth of ambient H2
• Gravitational/magnetic instability
• Shock compression
• Spiral Arms
• Supernovae
• From HI of H2?
Correlation with HI
• Filaments of HI
around all GMCs
M33
all HI
w/
CO
Density
Engargiola et al, 2003
Correlation with Spiral Arms
•  60% of H2 in spiral arms
• Grand design spirals:
• > 90% (Nieten et al. 2006, Garcia-Burillo et al 1993)
Rosolowsky et al, 2007
M33
Age Limits
•  = 10-20 Myr
• Collisional build
up of molecular
clouds
M33
•  = 2000 Myr
• Quiescent growth
of ambient H2
• H2 = 0.3 MO pc2
•  = 100 Myr
Engargiola et al, 2003
Shocks
• Observation of a
shocked GMA
M31
12C
Tosaki, 2007
13C
GMC Formation -Conclusions
• Formed primarily
from either HI or H2
• Compressed to selfgravitating clouds in
spiral arms
Life Cycle
Cloud Formation
Protostar Collapse
Cloud Core Formation
Cloud Dispersal
Stars Form
Cloud Core Formation
Lagoon Nebula
• GMC is supported by:
• Magnetic flux
• Turbulence
• Support is removed either
• Slowly by Ambipolar diffusion
• Fast by decay of turbulence and
turbulence amplified diffusion
• Cores (regions 2-4 times ambient density)
form at  10% efficiency
Initial Conditions
• Cloud envelope is
• In non-equilibrium
• Magnetically subcritical (Cortes et al, 2005)
• Very inhomogenous
Carina, HST
Observations of Cores
Myers & Fuller, 1991
Observations of Cores
• Cores are:
Oblate
• Non-isotropic
• More prolate than oblate
• Not necessarily aligned
with the magnetic field
(Glenn 1999)
Prolate
Ratio of Clouds without Stars
• One last test of timescale:
• NNS/NT = NS/ T
Cloud Formation
Protostar Collapse
Cloud Core Formation
Cloud Dispersal
Stars Form
Ratio of Clouds without Stars
M33 -- Distance between GMC and HII
• Very few MW
GMCs without
SF
• 25% of GMCs
in other
galaxies have
no associate
HII regions
(Blitz, 2006)
Engargiola, et al 2003
Ratio of Clouds without Stars
• NNS/NT = NS/ T  1/4
• Dynamic Collapse
Protostar Collapse
Cloud Dispersal
Cloud Formation
Cloud Core Formation
Stars Form
Life Cycle
Cloud Formation
Protostar Collapse
Cloud Core Formation
Cloud Dispersal
Stars Form
Core Collapse to Protostar
• Overdensties collapse
• Collapse regulated by
• Turbulence
• Magnetic Field
• Fragmentation
• Protostar formation
when core becomes
opaque
Core Sizes &Densities
Log Density
Enoch et al, 2008
Radius (pc)
Lee et al, 1999
Protostar Formation
Size
Magnetic Support
• Cores are (probably)
supercritical,
i.e. not supported by
the magnetic field
• M/B = c G-1/2
• c  0.12
Crutcher, 1999
Turbulence
• Cores are turbulent
• Motions are
Supersonic
• Turbulence
from
shocks or
MHD waves
Myers & Khersonsky, 1994
MHD Turbulence
• Dependent on Ionization
• Decays by ***
• Decay rate is still comparable to nonmagnetic turbulence
• Speeds close to Alfven speed
Time Scales
• We have flow of
material onto
magneticallyunsupported cores
• Larger, more massive
cores collapse to
protostars
• How fast does this
happen?
Time Scales -Spiral Arm Offset
Time Scales -Spiral Arm Offset
12CO
Tosaki, 2002
M51 13CO
H
Time Scales -Spiral Arm Offset
• Difference between peaks  10 Myr
• Long delay of SF OR staggered SF
Tosaki, 2002
Time Scales -Statistcs
• Ratio of clouds without protostars:
• NNSC/NC = NSC/ C
Protostar Collapse
Cloud Dispersal
Cloud Formation
Cloud Core Formation
Stars Form
Time Scales -Statistics
• Optically Selected
MW Cores:
• NNSC/NC = 306/400
(Lee & Myers, 1999)
• Perseus, Serpens,
& Ophiuchus:
• NNSC/NC = 108/200
(Enoch et al, 2008)
• 25% - 50% of core
life before SF
(Enoch et al, 2008)
Time Scales -Statistics
• Lifetime of a protostar  2 - 5 x 105 Myr
• Lifetime of a core  0.3 - 1 x 106 Myr
Protostar Collapse
Cloud Dispersal
Cloud Formation
0.5 Myr
Cloud Core Formation
Stars Form
Life Cycle
Cloud Formation
Protostar Collapse
Cloud Core Formation
Cloud Dispersal
Stars Form
Stars Form
• Powered by
gravitational
energy
• Envelopes of
accreting material
• T Tauri Stars
Trifid, HST
Size
Starless
Perseus Cores
Younger Protostar
Older Protostar
Hatchel & Fullerl, 2008
Time Scale
• T Tauri
Problem
• Most stars
form within
3 Myr
Palla & Stahler, 2000
Location
Huff & Stahler, 2006
Time Scale
• Star formation lasts  2 - 4 Myr
• Clouds gone after 5 - 10 Myr
Protostar Collapse
Cloud Dispersal
Cloud Formation
2 - 4 Myr
Cloud Core Formation
Stars Form
Lifecycle
Cloud Formation
Protostar Collapse
Cloud Core Formation
Cloud Dispersal
Stars Form
Clouds Dispersing
Leisawitz, 1989
Proximity to New Stars
• Star clusters older
than 10 Myr have no
associated clouds
Leisawitz, 1989
Cascading SF
M51, HST
• Dispersing clouds
may spark SF
elsewhere
Hartmann
Putting it all Together
Cloud Core Formation
Stars Form
Cloud
Formation
0
Protostar
Collapse
Cloud Dispersal
1
4
Cascading SF
10 - 20 Myr
Nagging Questions
• Do clouds form from HI of H2?
• How long before cores form?
• What effect does the magnetic field
have on turbulence?
Thanks
• Tom Quinn, Fabio
Governato, Julianne
Dalcanton, Andrew
Connely, Bruce Hevly
• Adrienne and David
for making me dinner
• Everybody who came
to my practice talk
Gas In-fall Onto Cores
Lee, 2001
Alignment
MHD Turbulence
Padoan, 2004
Core Densities
Enoch, 2008
Location
Huff & Stahler, 2006
More Dispersal
Jorgensen, 2007