Chem 125 Lecture 10 9/26/07 Preliminary

Download Report

Transcript Chem 125 Lecture 10 9/26/07 Preliminary

Chemistry 125: Lecture 33

Conformational Energy and Molecular Mechanics

Understanding conformational relationships makes it easy to draw idealized chair structures for cyclohexane and to visualize axial-equatorial interconversion. After quantitative consideration of the conformational energies of ethane, propane, and butane, cyclohexane is used to illustrate the utility of molecular mechanics as an alternative to quantum mechanics for estimating such energies. To give useful accuracy this empirical scheme requires thousands of arbitrary parameters. Unlike quantum mechanics, it assigns strain to specific sources such as bond stretching, bending, and twisting, and van der Waals repulsion or attraction.

Synchronize when the speaker finishes saying “…in more detail than people wanted to hear about.” Synchrony can be adjusted by using the pause(||) and run(>) controls.

For copyright notice see final page of this file

Ernst Mohr Illustrations (1918) confirm Sachse’s 1890 insight.

Ernst Mohr Illustrations (1918)

flagpole bowsprit “chair” Red bonds rotate in & up. “boat” Blue bonds rotate in & down. “ring flip” by 60° counter-rotation of two parallel bonds inverted chair

What o’clock?

Ernst Mohr Illustrations (1918)

?

?

?

?

Drawing chair cyclohexane rings:

opposite C-C bonds parallel axial bonds parallel to 3-fold axis equatorial bonds parallel (

anti

) to next-adjacent C-C bonds

For such problems D.H.R. Barton Invents

Conformational Analysis

(1950) Intermediates in steroid hormone synthesis   “up” ;   “down” (for molecule in conventional orientation, old-fashioned configuration notation, like

cis / trans

) Barton redraws Ring A C D A B  

Baeyer observed only one c-Hexyl-COOH, but in these epimers,

and

OH groups have different reactivity!

(configurationally diastereotopic)

For such problems D.H.R. Barton Invents

Conformational Analysis

(1950)

ERRORS?

  “up” ;   “down” (for molecule in conventional orientation, old-fashioned configuration notation, like

cis / trans

)

Ring Flip?

) (e)

“equatorial”

(p)

“polar”

(now

axial

) 3-fold axis

Cf

. ~1950 Stereochemistry: Bijvoet, Newman, CIP, (Molecular Mechanics)

(Nobel Prize 1969 for “development of the concept of conformation and its application in chemistry”)

Ernst Mohr Illustrations (1918)

gauche

OK within second ring of decalin, but not

anti .

anti N.B.

During ring flip

equatorials

become

axials

and vice versa .

gauche

fused chairs in "decalin" (decahydronaphthalene)

Try with models if you’re skeptical.

Ring flip impossible for trans decalin!

Mol4D

(CMBI Radboud University, Nijmegen, NL) Conformational

Jmol

Animations

Click for INDEX

or go to http://cheminf.cmbi.ru.nl/wetche/organic/index.html

(see Wiki to install Jmol)

Mol4D

(CMBI Radboud University, Nijmegen, NL) Click Points Ethane Click to Animate http://cheminf.cmbi.ru.nl/wetche/organic/nalkanesconf/ethane/jmindex.html

or go to

Staggered Eclipsed

barrier ~5.2 kJ/mol  0.239 = 1.24 kcal/mol Should be ~2.9 kcal/mol.

Caveat emptor!

Step Keys

Mol4D

(CMBI Radboud University, Nijmegen, NL) Propane Click to Animate http://cheminf.cmbi.ru.nl/wetche/organic/nalkanesconf/propane/jmproprot.html

or go to Eclipsed 3.3 kcal/mol Staggered

Mol4D

(CMBI Radboud University, Nijmegen, NL) Butane (central bond) or go to Click to Animate http://cheminf.cmbi.ru.nl/wetche/organic/nalkanesconf/butane/jmindex.html

Anti

 10 13  10 -3/4 

Gauche +

3.4

= 10 7.5

eclipsed

3.4 kcal/mol (tells how fast) OOPS!

fully eclipsed

~ 4.4 kcal/mol?

(experimentally irrelevant)

Gauche

-

Anti Gauche

+ 0.9 kcal/mol (tells how much)

Gauche / Anti

= 10 -3/4 

0.9

= 2  10 -3/4  = 10

0.9

-0.68

= 2  = 1 / 4.7

10 -0.68

= 1 / 2.4

Mol4D

(CMBI Radboud University, Nijmegen, NL) Ring Flip of

c

-Hexane Click to Animate or go to http://cheminf.cmbi.ru.nl/wetche/organic/cyclohexane/jm/chxjmol.html

Barrier (

Half-Chair

) ~ 11 kcal/mol

Chair

conformer

Flexible

or

Twist-Boat

conformer ~5.5 kcal/mol

Mol4D

(CMBI Radboud University, Nijmegen, NL)

Flexible c

-Hexane Click to Animate go to http://cheminf.cmbi.ru.nl/wetche/organic/cyclohexane/jm/twist_boat.html

or Barrier (

Boat

) ~ 1 kcal/mol

Flexible Twist-Boat

or Form

Shape, “Strain Energy”

&

Molecular Mechanics

“Hooke’s Law” for Strain Energy

Conformational Energy of Ethane 3 kcal/mol 0° H H H H H H H H H H 120° H H Torsional Angle H 240° H H H H H H H H H H H H H H H 360° H H H H

Conformational Energy of Butane 4.4 kcal/mol 4.4 kcal/mol 3.4 kcal/mol 0° CH CH 3 H H 0.9 kcal/mol H CH 3 CH 3 H H H 0.9 kcal/mol 120° CH 3 H Torsional Angle 240° H CH 3 H CH 3 H CH 3 H CH 3 H CH H 3 H H CH 3 CH 3 H H H H 360° H CH 3 H H

Molecular Mechanics (1946)

“Molecular Mechanics” programs calculate (and can minimize) strain assuming that molecules can be treated as mechanical entities.

To achieve useful precision they require a very large set of empirical force constants adjusted arbitrarily to make energies match experiment (or reliable quantum calculations).

“MM2” Parameters

66 different atoms types (including 14 different types of carbon)

138

different bond stretches (41 alkane carbon-X bonds)

“MM2” Parameters

66 different atoms types (including 14 different types of carbon)

624

different bond bendings (41 alkane-alkane-X angles)

“MM2” Parameters

66 different atoms types (including 14 different types of carbon) 0.5

-0.5

Overall Butane

1494

tweaked by torsional energy 180° is low “because of” reduced anti van der Waals

different bond twistings (37 alkane-alkane

-

alkane-X twists) Sum: 1-1-1-1 Torsional Contribution to Butane

After simplification “MM3” has >2000 Arbitratily Adjustable Parameters !

Contrast with quantum mechanics, where there are no arbitrary parameters. (just particle masses, integral charges & Planck's constant)

e.g.

gauche C-C-C-C 4

e.g.

(unfavorable) 1 5

e.g.

favorable C

H “Ideal” Cyclohexane (by Molecular Mechanics) 0.33

0.36

0.09

2.15

-1.05

4.68

6.56

Stretch Bend Stretch-Bend Easier (or harder?) to bend a

TOTAL

Strain (kcal/mol) 0.00

0.00

-0.000

2.12

-0.55

6.32

7.89

6

gauche

butanes 6  0.9 =

5.4

(mnemonic) Stretches and flattens slightly to reduce VDW Relaxation of Cyclohexane (by Molecular Mechanics) Minimized 0.33

0.36

0.09

2.15

-1.05

4.68

Stretch Bend Stretch-Bend Torsion Non-1,4 VDW 1,4 VDW

6.56

TOTAL

“Ideal” 0.00

0.00

-0.000

2.12

-0.55

6.32

7.89

Axial Methylcyclohexane (by Molecular Mechanics) H  8 Axial - Equatorial

gauche

butanes !

3 [ 2

gauche

2 anti

] CH 3 Relaxed 0.49

A-value

” a measure of group “size”

“Idealized” Stretch 0.00

0.96

0.14

3.08

-1.31

5.31

8.66

Bend Stretch-Bend Torsion Non-1,4 VDW 1,4 VDW

TOTAL

0.00

-0.00

2.82

6.12

7.61

16.55

End of Lecture 33 Dec. 1, 2008

Copyright © J. M. McBride 2009.

Some rights reserved. Except for cited third-party materials, and those used by visiting speakers, all content is licensed under a Creative Commons License (Attribution-NonCommercial-ShareAlike 3.0) . Use of this content constitutes your acceptance of the noted license and the terms and conditions of use. Materials from Wikimedia Commons are denoted by the symbol .

Third party materials may be subject to additional intellectual property notices, information, or restrictions.

The following attribution may be used when reusing material that is not identified as third-party content: J. M. McBride, Chem 125. License: Creative Commons BY-NC-SA 3.0