Transcript Document
Novel high-k materials Can we nominate candidates for the 22 and the 16 nm nodes? Olof Engstrom Chalmers University of Technology Paul Hurley Tyndall National Institute Octavian Buiu University of Liverpool Max Lemme AMO Outline • • • • • Why high-k? Essential properties needed Why are rare-earth oxides interesting? Comparison between different candidates Finalists? Bulk MOS: Oxide voltage vs gate voltage Oxide thickness= 10 [Å] Silicon doping: 4 1018 cm-3 k 3.9 7 15 25 O 0.6 S qYs V EF Oxide voltage [V] M 0.4 0.2 0 -0.2 0 0.5 1 Gate voltage [v] 1.5 The k-value should be ”lagom” SiO2 For Lg = 70 nm k = 10 k = 25 k = 50 F Mohapatra et al, IEEE Trans. Electron. Dev. 49, 826 (2002) Essential properties DEc DEv •k-values •Energy offsets DEc and DEv •Reactivity with silicon •Hygroscopicity •Structural stability •Interface states •Charge carrier traps Metals of interest Group** 1 IA 1A 18 VIIIA 1 1 H 1.008 3 2 11 4 6 7 9.012 12 Na Mg 22.99 24.31 19 20 5 6 7 8 B C N O 10.81 12.01 14.01 16.00 8 9 10 3 4 5 6 7 11 ------VIII ----IIIB IVB VB VIB VIIB IB -3B 4B 5B 6B 7B 1B ------- 8 ------21 22 23 24 25 26 27 28 29 12 IIB 2B 30 13 14 Al Si 15 16 P S 26.98 28.09 30.97 32.07 31 32 33 34 2 He 9 4.003 10 F Ne 19.00 20.18 17 18 Cl Ar 35.45 39.95 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 37 5 4 Li Be 6.941 3 8A 13 14 15 16 17 IIIA IVA VA VIA VIIA 3A 4A 5A 6A 7A 2 IIA 2A 40.08 38 Rb Sr 85.47 87.62 55 56 87 88 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 39 40 41 42 43 44 45 46 47 65.39 48 69.72 72.59 74.92 78.96 49 50 51 52 Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te 88.91 91.22 92.91 95.94 57 72 73 74 (98) 101.1 102.9 106.4 107.9 112.4 75 76 77 78 79 80 107 108 109 110 111 112 114.8 118.7 121.8 127.6 81 82 83 84 79.90 53 83.80 54 I Xe 126.9 131.3 85 86 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 132.9 137.3 *138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 89 104 105 106 Fr Ra Ac Rf Db Sg Bh Hs Mt Ds Uuu Uub (223) (226) ~(227) (257) (260) (263) (262) (265) (266) (271) (272) (277) Lanthanide Series* Actinide Series~ 58 59 60 61 62 63 64 65 66 67 68 114 116 118 Uuq Uuh Uuo (296) (298) (?) 69 70 71 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 90 91 92 93 94 95 96 97 98 164.9 99 167.3 168.9 173.0 175.0 100 101 102 103 Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions. Polarizability and k-value Clausius-Mosotti 2 4 ] 3 V m k 1 [1 4 ] 3 V m [1 Polarizability, 6 5 4 3 2 1 0 Si(4+) Al(3+) Hf(4+) Zr(4+) Y(3+) La(3+)Ce(3+) Pr(3+)Gd(3+)Yb(3+) Lu(3+) Ion D. G. Schlom et al, Thin films and heterostructures for oxide electronics, (Springer, 2005), p. 31 Energy offset vs. k-value Borders for the 22 nm LSTP bulk node: 10-2 A/cm2 EOT=0.6 nm Vox= 1V (Target) LaLuO3 Requires k DE ≈ 70 eV O. Engström, B. Raeissi, S. Hall, O. Buiu, M.C. Lemme, H.D.B. Gottlob, P.K. Hurley, K. Cherkaoui, SSE, 51, 622 (2007) Reactivity La2O3 (evap) Gd2O3 (MBE) Kim et al SSE 49, 825 (2005) Czernohorsky et al APL 88, 152905 (2006) As grown Lu2O3 (ALD) Scham et al Topics in Appl. Phys. Vol. 106, p. 153 (Springer, 2007) 550 C 950 C Reactivity Si + MO DG1000C For Si + O DG1000C < 0 M + SiO2 MSi + SiO2 M + MSiO 500 DG [kJ/mol] 400 DG1000C 300 200 100 SiO2 0 Al2O3 ZrO2 HfO2 Yb2O3 Lu2O3 Gd2O3 Dy2O3 Sm2O3 Pr2O3 La2O3 Oxide D. G. Schlom et al, Thin films and heterostructures for oxide electronics, (Springer, 2005), p. 31 EOT (120 hrs)/EOT (fresh) Hygroscopicity 1000 J120 hrs/Jfresh 100 10 1 0,1 0,01 1E-3 Eu2O3 ZrO2 Yb2O3 Lu2O3 Gd2O3 Dy2O3 Sm2O3 Pr2O3 La2O3 2,5 2,0 1,5 1,0 0,5 0,0 SiO2 ZrO2 Oxide Oxide water + oxide Yb2O3 Lu2O3 Gd2O3 Dy2O3 Sm2O3 Pr2O3 La2O3 hydroxide K.Kakushima, K.Tsutsui, S-I. Ohmi, P.Ahmet V.R. Rao and H. Iwai in Rare earth oxide thin films ( Springer, 2007), p. 345 Structural stability Example: LaLuO3 APL, 89, 222902 (2006) Leakage Leakage current [A/cm2] 1 Gd2O3 [2], HfO2[1], ZrO2[1] 0,1 0,01 HfGdO [3] 1E-3 1E-4 3 1E-5 HfO2 [5] 1E-6 Lu2O3 [4] 1E-7 with epitaxial Lu2O3 - silicate IL) HfO2 (with HfSiO IL) and ZrO2 La2O3 [1] 1E-8 1E-9 0,4 0,6 0,8 1,0 1,2 1,4 EOT [nm] [1] H. Iwai et al, Proc. IEDM, 2002 [2] H.D.B. Gottlob et al, IEEE Electron Dev. Lett. 27, 814 (2006) [3] S. Govindarajan et al, APL 91, 062906 (2007) [4] P. Darmawan et al, APL 91, 092903 (2007) [5] A. Ogawa et al Microel. Eng. 84, 1861 (2007) 1,6 Experimental C = f (V,freq.) Gd2O3 ALD HfO2 React. sputt. Gd2O3 MBE B.Raeissi, J.Piscator, O.Engström, S.Hall, O.Buiu, M.C.Lemme, H.D.B.Gottlob, P.Hurley, K.Cerkaoui and H.J.Osten, Proc. ESSDERC, 2007, p 287 LaSiOx/Si interface LaSiOx Wafer X3361-19 Site 19a18 0.030 2 Capacitance (F/m ) 0.025 0.020 0.015 LaSiOx E-beam evap. 0.010 1 kHz 10 kHz 100 kHz 1 MHz 0.005 0.000 -2 -1 0 1 Voltage Vg (V) P.K.Hurley, K.Cherkaoui, E.O’Connor, M.C.Lemme, H. D.B. Gottlob, M.Schmidt , S.Hall, Y.Lu, O.Buiu, B.Raeissi, J. Piscator and O.Engstrom, J. Electrochem. Soc., in press Dit for HfO2, Gd2O3 and LaSiOx 10 0.0035 LaSiOx 4 nm EOT Gp/ 12 -2 -1 Dit (x10 cm eV ) Gp/ 0.0030 8 12 0.0025 0.0020 6 4 0.09 eV -1 0.92 0.83 -2 Dit=5x10 eV cm Vg=-0.75V 0.0015 10000 100000 1000000 HfO2 ALD 1.4nm EOT (Sample 1) HfO2 sputtered 18nm EOT (Sample 4) Gd2O3 MOCVD 17nm EOT (Sample 5) Gd2O3 ALD 13.5nm EOT (Sample 6) 2 0,4 LaSiOx e-beam 4nm EOT (Sample 9) 0,6 0,8 1,0 E-Ev (eV) P.K.Hurleya, K.Cherkaoui, E.O’Connor, M.C.Lemme, H. D.B. Gottlob, M.Schmidt , S.Hall, Y.Lu, O.Buiu, B.Raeissi, J. Piscator and O.Engstrom, J. Electrochem. Soc., in press Final solution: The Nominees Group** 1 IA 1A 18 VIIIA 1 1 H 1.008 3 2 11 4 6 7 9.012 12 Na Mg 22.99 24.31 19 20 21 22 23 24 25 26 27 28 29 12 IIB 2B 6 7 8 9 4.003 10 B C N O F Ne 19.00 20.18 17 18 30 13 14 Al Si 15 16 P S 26.98 28.09 30.97 32.07 31 32 33 34 40.08 38 Rb Sr 85.47 87.62 55 56 87 88 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 39 40 41 42 43 44 45 46 47 65.39 48 69.72 72.59 74.92 78.96 49 50 51 52 Cl Ar 35.45 39.95 35 36 Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te 88.91 91.22 92.91 95.94 57 72 73 74 (98) 101.1 102.9 106.4 107.9 112.4 75 76 77 78 79 80 107 108 109 110 111 112 114.8 118.7 121.8 127.6 81 82 83 84 79.90 53 83.80 54 I Xe 126.9 131.3 85 86 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 132.9 137.3 *138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 89 104 105 106 Fr Ra Ac Rf Db Sg Bh Hs Mt Ds Uuu Uub (223) (226) ~(227) (257) (260) (263) (262) (265) (266) (271) (272) (277) Lanthanide Series* Actinide Series~ 58 59 60 61 62 63 64 65 66 67 68 114 116 118 Uuq Uuh Uuo (296) (298) (?) 69 70 71 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 90 91 92 93 94 95 96 97 98 164.9 99 167.3 168.9 173.0 175.0 100 101 102 103 Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions. Nominees He 5 10.81 12.01 14.01 16.00 8 9 10 3 4 5 6 7 11 ------VIII ----IIIB IVB VB VIB VIIB IB -3B 4B 5B 6B 7B 1B ------- 8 ------- 2 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 37 5 4 Li Be 6.941 3 8A 13 14 15 16 17 IIIA IVA VA VIA VIIA 3A 4A 5A 6A 7A 2 IIA 2A Too low k DEc,v Wild cards Exists only in Andromeda Finalists Pr2O3 La2O3 Gd2O3 LaLuO3 HfO2 ZrO2 k x DEc 66 69 42 67 35 38 k x DEv Low 66 31 67 83 80 Reactivity High High Low High High High Hygroscop. Low High High Low Low Low Struct. stab. Low Low High High Low Low Conclusion Lantanum based oxides seem worth a bid but fortunately for academic people there is a lot more work to do! C [F] Theoretical C=f(V,freq.) 2.5 10 2 10 1.5 10 1 10 5 10 -9 2 10 1.5 10 1 10 -9 -9 -9 -9 -9 -10 5 10 -10 0 -0.25 0 0.25 0.5 0.75 1 C-V -9 0 1.25 0 0.2 0.4 0.6 0.8 1 Dit [m-2eV-1] Gate voltage [V] 7 10 6 10 5 4 3 10 10 10 17 17 17 17 17 3 10 2.5 10 2 10 1.5 10 1 10 5 10 17 17 17 17 Dit = f(DGn) 17 16 0 0 0.1 0.2 0.3 0.4 0.5 DGn[eV] 0 0.1 0.2 0.3 0.4 0.5 -20 sn [m2] -21 log sn = f(DGn) -20.5 -22 -21 -23 -21.5 -24 -22 0 0.1 0.2 0.3 0.4 0.2 DGn[eV] 0.25 0.3 0.35 0.4 The concept of polarization F = V/d P/(3e0) Floc= F + P/(3e0) P = (1/Vm) c Floc 4e0 c [A3] Remote phonon scattering Large means sloppier material (spring + constant/mass)1/2 HfO2 Oxide - ZrSiO4 ZrO2 Al2O3 SiO2 0,00 0,05 0,10 0,15 0,20 0,25 0,30 Fröhlich coupling constant High-k oxide Fischetti et al, PRB 90, 4587 (2001) LO-phonon Si