Transcript Slide 1

STATO DI SVILUPPO DELL’ACCUMULO ENERGETICO
PER VIA ELETTROCHIMICA
LE BATTERIE AL LITIO
Bruno Scrosati
Laboratory for Advanced Batteries
and Fuel Cell Technology
Dipartimento di Chimica
Centro Hydro-ECO
SAPIENZA Università di Roma
Research background
Wind
Geothermal
Cost of Oil (WTI)
Solar
 Global warming : suppression of CO2
 Demand of oil in the world
(particularly in BRICs)
 Energy Storage, Vehicle
Courtesy of Dr. Ahiara, Samsung Research,
Yokohama, Japan
Intermittent alternative
energy sources (REPs) ,
as well as electric
transportation, require
convenient energy
storage systems, e.g.,
batteries
Kyoto protocol
http://www-gio.nies.go.jp
2
 Li-ion battery system
Electrochemical Reactions
• Cathode
LiCoO2
c
d
Li1-xCoO2 + xLi+ + x e-
• Anode
Cn + xLi+ + x e-
c
d
CnLix
• Overall
LiCoO2 + Cn
c
d
Li1-xCoO2 + CnLix
Figure. Schematic illustration of a rechargeable lithium battery
(From: K. Xu, Encyclopedia of Power Sources, Elsevier, 2010)
3
Charge
Lithium-Ion Battery
Electrolyte
Cu
Current
AL
Current
Collector
Collector
Graphite
LiMO2
SEI
SEI
Discharge
Lithium-Ion Battery
Electrolyte
Cu
Current
AL
Current
Collector
Collector
Graphite
LiMO2
SEI
SEI
Lithium Batteries
Lithium batteries: high
energy density (3 times leadacid).
Power sources of choice
for the consumer
electronics market
The application of lithium
batteries spans beyond
the electronics market
HEV, EV and FCV in Japan
Hybrid (HEV) and electric (EV) vehicles are already on the road
HEV in market
PHEV
EV
FCHV
Their diffusion is expected
to drammatically increase in
the next few years
35000
US$ Million/CY
30000
BEV
PHEV
HEV
25000
Others
20000
BT
15000
Game
MP3
10000
CAM
DSC
5000
PT
03CY
04CY
05CY
06CY
07CY
08CY
09CY
10CY
11CY
12CY
13CY
14CY
15CY
16CY
17CY
18CY
0
7
Reference: Institute of Information Technology, Japan
NBPC
Courtesy of Dr. Ahiara, Samsung Research,
Yokohama, Japan
Lithium Batteries
Although lithium batteries are established
commercial products
further R&D is still required to improve
their performance to meet the REP
andHEV-EV requirement
Enhancement in safety, energy density
and cost are needed!
THE SAFETY ISSUE
SAFETY
Actions:
Replacement of the oxygen releasing
cathode material (LiCoO2) with structurally
stable alternative compounds, e.g. LiFePO4
Replacement of the flammable liquid
organic electrolyte with more stable
materials, for example
Polymer ionic conducting membranes
THE COST ISSUE
Battery type
AVERAGE PRICE PER
CELL IN 2005
Li-ion average
price
$2,45
NiMH average
price
$1,00
NiCd* average
price
Lead- acid
0.15
Ni-Cd
0.95
Li-ion (CLiCoO2)
1.35
Li-ion (CLiMn2O4)
1.10
Ni-MH
2.00
$0,75
0
0,5
1
1,5
2
2,5
$ per cell
Cost of lithium batteries in comparison with other
rechargeable systems
Source : The rechargeable battery market,
2005-2015, June 2006
Cost
(US$/W)
Source :TIAX, based on MEDI data
COST
Actions:
Replacement of the expensive cathode
material (LiCoO2) with low cost, abundant
alternative compounds, ideally iron or
sulfur – based cathodes
Cost
Comparison of various raw materials for lithium secondary batteries.
Cost
US
$/ton
Cobalt
Co
Iron
Fe
(ore)
Nickel
Ni
41,850
135
12,350
Manga Copper Sulfur
nese
Cu
(S)
Mn
(ore)
564
2,770
28
Materials in use: LiCoO2 (cathode) ; Cu (current collector)
Alternative materials: LiFePO4, LiMn2O4, S (cathode) ;
Stainless Steel (current collector)
THE ENERGY ISSUE
Energy Density (Wh/kg) 
driving range (km)
Middle size car (about 1,100 kg) 
using presently available lithium
batteries (150 Wh/kg) 
driving 250 km with a single charge
  200 kg batteries
Enhancement of about 2-3 times in
energy density is needed!
Electric Vehicle Applications- The energy issue
Revolutionary
TechnologyChange
>500 Wh/kg
Super- Battery < 200kg
Pb-acid 3000 kg
Ni-MH 1200 kg
200 Wh/kg*
Estimated
limit of
Lithium-Ion
Technology
170 Wh/kg*
140 Wh/kg*
Li-ion Batteries
Present
2012
2017
Year
Courtesy of Dr. Stefano Passerini, Munster University, Germany
ENERGY DENSITY
Actions:
Replacement of the present electrode
materials with alternative compounds
having much higher values of specific
capacity
X
High-Energy Battery Technologies
6
Where should we go?
Potential vs. Li/Li+
5
4
"4V"
3
Oxide
Cathodes
High capacity
cathodes
Li-ion
2
Super- Battery <200kg/500km
Li/O2 , Li/S
Intercalation
materials
1
Carbon
anodes
"0V"
High capacity
0
0
250
500
750 1000 1250 1500 1750
Capacity / Ah kg-1
Courtesy of Dr. Stefano Passerini, Munster University
 Why Li/S battery?
Anode
Anodic rxn.:
2Li
Cathodic rxn.:
S + 2e - → S2-
Overall rxn.:
2Li + S → Li2S,
Cathode
e-
e-
→ 2Li+ + 2e-
ΔG = - 439.084kJ/mol
Li+
Li+
OCV: 2.23V
Li+
Li+ + S
Electrolyte
(polymer or liquid)
Theoretical capacity : 1675mAh/g-sulfur
Li2S
Li
Specific energy ( Wh/kg )
500
Future Li-S performance region
400
Li-S, 2005
300
Li-S, 2001
200
Prismatic Li-Polymer
SION POWER CORPORATION
PBFC-2, Las Vegas, Nevada, USA,
June 12-17, 2005
100
0
0
100
200
300
400
500
600
Energy density ( Wh/L )
Fig. Energy density comparison with commercial secondary batteries.
 Why Li and S for electrode active material? (1)
Lithium
Sulfur
-. Atomic weight: 32.06g/mol
-. Light yellow solid
(2.07g/cm3)
-. Non-toxic, “green” material
-. Abundant and cheap
(28 US$/ton)
-. Theoretical capacity:
1.675 Ah/g
-. Atomic weight: 6.94g/mol
-. Lightest alkali metal
(0.54g/cm3)
-. Silvery, metallic solid
-. Theoretical capacity:
3.86Ah/g
-. E = -3.045VSHE
Group**
Period
1
IA
1A
18
VIIIA
8A
1
1
2
IIA
2A
H
1.008
3
2
3
4
5
6
14
IVA
4A
15
VA
5A
16
VIA
6A
17
VIIA
7A
2
He
4.003
10
4
5
6
7
8
9
Li
Be
B
C
N
O
F
Ne
6.941
9.012
10.81
12.01
14.01
16.00
19.00
20.18
11
12
Na
Mg
22.99
19
11
IB
1B
12
IIB
2B
13
14
15
16
17
18
Al
Si
P
S
Cl
Ar
26.98
28.09
30.97
32.07
35.45
39.95
28
29
30
31
32
33
34
35
36
Co
Ni
Cu
Zn
Ga
Ge
As
Se
Br
Kr
58.47
45
58.69
46
63.55
47
65.39
48
69.72
49
72.59
50
74.92
51
78.96
52
79.90
53
83.80
54
4
IVB
4B
5
VB
5B
6
VIB
6B
7
VIIB
7B
8
24.31
3
IIIB
3B
20
21
22
23
24
25
26
27
K
Ca
Sc
Ti
V
Cr
Mn
Fe
39.10
37
40.08
38
44.96
39
47.88
40
50.94
41
52.00
42
54.94
43
55.85
44
9
10
------- VIII ------------- 8 -------
Rb
Sr
Y
Zr
Nb
Mo
Tc
Ru
Rh
Pd
Ag
Cd
In
Sn
Sb
Te
I
Xe
85.47
55
87.62
56
88.91
57
91.22
72
92.91
73
95.94
74
(98)
75
101.1
76
102.9
77
106.4
78
107.9
79
112.4
80
114.8
81
118.7
82
121.8
83
127.6
84
126.9
85
131.3
86
Cs
Ba
La*
Hf
Ta
W
Re
Os
Ir
Pt
Au
Hg
Tl
Pb
Bi
Po
At
Rn
132.9
137.3
138.9
178.5
180.9
183.9
186.2
190.2
190.2
195.1
197.0
200.5
204.4
207.2
209.0
(210)
(210)
(222)
87
7
13
IIIA
3A
88
89
109
110
111
112
114
116
118
Fr
Ra
Ac~
Rf
Db
Sg
Bh
Hs
Mt
---
---
---
---
---
---
(223)
(226)
(227)
(257)
(260)
(263)
(262)
(265)
(266)
()
()
()
()
()
()
58
Lanthanide Series*
Actinide Series~
104
59
105
106
107
62
108
60
61
68
69
Ce
Pr
Nd
Pm
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb
Lu
140.1
90
140.9
91
144.2
92
(147)
93
150.4
94
152.0
95
63
157.3
96
64
158.9
97
65
162.5
98
66
164.9
99
67
167.3
100
168.9
101
173.0
102
70
175.0
103
71
Th
Pa
U
Np
Pu
Am
Cm
Bk
Cf
Es
Fm
Md
No
Lr
232.0
(231)
(238)
(237)
(242)
(243)
(247)
(247)
(249)
(254)
(253)
(256)
(254)
(257)
Courtesy of Prof. K.Kim, Gyeongsang National University, Korea
http://periodic.lanl.gov
Why Li / S battery ?
Comparison of various secondary batteries.
System
Negative
electrode
Positive
electrode
Voltage
(V)
Th. Cap.
(mAh/g)
Th. En.
(Wh/kg)
Ni-Cd
Cd
NiOOH
1.2
162
219
Ni-MH
MH alloy
NiOOH
1.2
~178
~240
Li-Ion
LixC6
Li1-xCoO2
3.6
137
(for x=0.5)
360
Li-S
Li
S
2.1
1,675
2,600
Li-FeS2
Li
FeS2
1.5
893
1,273
Comparison of various raw materials for lithium secondary batteries.
Iron
(Fe)
Nickel
(Ni)
Manganese
(Mn)
Cobalt
(Co)
Copper
(Cu)
Molybdenum
(Mo)
Sulfur
(S)
Cost
(US$/ton)
135
(Fe ore)
12,350
564
(Mn ore)
41,850
2,770
46,260
28
Atomic weight
(g/mol)
55.85
58.69
54.94
58.93
63.55
95.94
32.06
Courtesy of Prof. K.Kim, Gyeongsang National University, Korea
The lithium-sulfur battery
The Li/S concept is not new. However, so far
limited progress due to a series of practical issues
Major Issues:
 solubility of the polysulphides LixSy in the
electrolyte (loss of active mass  low utilization
of the sulphur cathode and in severe capacity
decay upon cycling)
 low electronic conductivity of S , Li2S and
intermediate Li-S products (low rate capability,
isolated active material)
 Reactivity of the lithium metal anode
(dendrite deposition, cell shorting, safety)
R&D is required to improve the
performance of super-batteries,
such as Li-S or Li-O2 to meet the
HEV-EV requirement
Large
investments are in progress
.
worldwide to reach this important
goal
Our approach:
Total renewal of the battery chemistry, including all
three components, i.e. anode, electrolyte and cathode.
ANODE
Conventional :Li metal

our work : Sn-C nanocomposite
(gain in reliability and in cycle life)
ELECTROLYTE
Conventional : liquid organic  our work : gel-polymer
membrane (gain in safety and cell fabrication)
CATHODE
Conventional : sulfur-carbon  our work : C- Li2S composite
Conventional : liquid organic
(Li-metal-free battery )
(Li metal battery)
Jusef Hassoun and Bruno Scrosati, Angew. Chem. Int. Ed. 2010, 49, 2371
http://www.wiley-vch.de/vch/journals/2002/press/201010press.html
THE BATTERY
e-
e-
−
V
+
Specific advantages
 Control of lithium sulphide solubility (specifically
designed polymer electrolyte)
Easiness of fabrication (polymer configuration; match
between anode and cathode specific capacity)
 Safety ( no lithium metal anode; no LiPF6 in the electrolyte;
chemical stability of electrodes)
 Low cost ( abundant materials; simple preparation)
SnC nanocomposite / gel electrolyte/ Li2S-C cathode
sulfur lithium-ion polymer battery
 High energy
density (about 3 times
that offered by
common lithium ion
batteries) and plastic
design.
Jusef Hassoun and Bruno Scrosati, Angew. Chem. Int. Ed. 2010, 49, 2371
http://www.wiley-vch.de/vch/journals/2002/press/201010press.html
26
Acknowledgement
Funds
Italian Ministry of Education , University and Resarch,
MIUR , PRIN 2007 Project
and
SIID Project “REALIST” (Rechargeable, advanced, nano
structured lithium batteries with high energy storage)
sponsored by Italian Institute of Technology.