Transcript Slide 1
STATO DI SVILUPPO DELL’ACCUMULO ENERGETICO PER VIA ELETTROCHIMICA LE BATTERIE AL LITIO Bruno Scrosati Laboratory for Advanced Batteries and Fuel Cell Technology Dipartimento di Chimica Centro Hydro-ECO SAPIENZA Università di Roma Research background Wind Geothermal Cost of Oil (WTI) Solar Global warming : suppression of CO2 Demand of oil in the world (particularly in BRICs) Energy Storage, Vehicle Courtesy of Dr. Ahiara, Samsung Research, Yokohama, Japan Intermittent alternative energy sources (REPs) , as well as electric transportation, require convenient energy storage systems, e.g., batteries Kyoto protocol http://www-gio.nies.go.jp 2 Li-ion battery system Electrochemical Reactions • Cathode LiCoO2 c d Li1-xCoO2 + xLi+ + x e- • Anode Cn + xLi+ + x e- c d CnLix • Overall LiCoO2 + Cn c d Li1-xCoO2 + CnLix Figure. Schematic illustration of a rechargeable lithium battery (From: K. Xu, Encyclopedia of Power Sources, Elsevier, 2010) 3 Charge Lithium-Ion Battery Electrolyte Cu Current AL Current Collector Collector Graphite LiMO2 SEI SEI Discharge Lithium-Ion Battery Electrolyte Cu Current AL Current Collector Collector Graphite LiMO2 SEI SEI Lithium Batteries Lithium batteries: high energy density (3 times leadacid). Power sources of choice for the consumer electronics market The application of lithium batteries spans beyond the electronics market HEV, EV and FCV in Japan Hybrid (HEV) and electric (EV) vehicles are already on the road HEV in market PHEV EV FCHV Their diffusion is expected to drammatically increase in the next few years 35000 US$ Million/CY 30000 BEV PHEV HEV 25000 Others 20000 BT 15000 Game MP3 10000 CAM DSC 5000 PT 03CY 04CY 05CY 06CY 07CY 08CY 09CY 10CY 11CY 12CY 13CY 14CY 15CY 16CY 17CY 18CY 0 7 Reference: Institute of Information Technology, Japan NBPC Courtesy of Dr. Ahiara, Samsung Research, Yokohama, Japan Lithium Batteries Although lithium batteries are established commercial products further R&D is still required to improve their performance to meet the REP andHEV-EV requirement Enhancement in safety, energy density and cost are needed! THE SAFETY ISSUE SAFETY Actions: Replacement of the oxygen releasing cathode material (LiCoO2) with structurally stable alternative compounds, e.g. LiFePO4 Replacement of the flammable liquid organic electrolyte with more stable materials, for example Polymer ionic conducting membranes THE COST ISSUE Battery type AVERAGE PRICE PER CELL IN 2005 Li-ion average price $2,45 NiMH average price $1,00 NiCd* average price Lead- acid 0.15 Ni-Cd 0.95 Li-ion (CLiCoO2) 1.35 Li-ion (CLiMn2O4) 1.10 Ni-MH 2.00 $0,75 0 0,5 1 1,5 2 2,5 $ per cell Cost of lithium batteries in comparison with other rechargeable systems Source : The rechargeable battery market, 2005-2015, June 2006 Cost (US$/W) Source :TIAX, based on MEDI data COST Actions: Replacement of the expensive cathode material (LiCoO2) with low cost, abundant alternative compounds, ideally iron or sulfur – based cathodes Cost Comparison of various raw materials for lithium secondary batteries. Cost US $/ton Cobalt Co Iron Fe (ore) Nickel Ni 41,850 135 12,350 Manga Copper Sulfur nese Cu (S) Mn (ore) 564 2,770 28 Materials in use: LiCoO2 (cathode) ; Cu (current collector) Alternative materials: LiFePO4, LiMn2O4, S (cathode) ; Stainless Steel (current collector) THE ENERGY ISSUE Energy Density (Wh/kg) driving range (km) Middle size car (about 1,100 kg) using presently available lithium batteries (150 Wh/kg) driving 250 km with a single charge 200 kg batteries Enhancement of about 2-3 times in energy density is needed! Electric Vehicle Applications- The energy issue Revolutionary TechnologyChange >500 Wh/kg Super- Battery < 200kg Pb-acid 3000 kg Ni-MH 1200 kg 200 Wh/kg* Estimated limit of Lithium-Ion Technology 170 Wh/kg* 140 Wh/kg* Li-ion Batteries Present 2012 2017 Year Courtesy of Dr. Stefano Passerini, Munster University, Germany ENERGY DENSITY Actions: Replacement of the present electrode materials with alternative compounds having much higher values of specific capacity X High-Energy Battery Technologies 6 Where should we go? Potential vs. Li/Li+ 5 4 "4V" 3 Oxide Cathodes High capacity cathodes Li-ion 2 Super- Battery <200kg/500km Li/O2 , Li/S Intercalation materials 1 Carbon anodes "0V" High capacity 0 0 250 500 750 1000 1250 1500 1750 Capacity / Ah kg-1 Courtesy of Dr. Stefano Passerini, Munster University Why Li/S battery? Anode Anodic rxn.: 2Li Cathodic rxn.: S + 2e - → S2- Overall rxn.: 2Li + S → Li2S, Cathode e- e- → 2Li+ + 2e- ΔG = - 439.084kJ/mol Li+ Li+ OCV: 2.23V Li+ Li+ + S Electrolyte (polymer or liquid) Theoretical capacity : 1675mAh/g-sulfur Li2S Li Specific energy ( Wh/kg ) 500 Future Li-S performance region 400 Li-S, 2005 300 Li-S, 2001 200 Prismatic Li-Polymer SION POWER CORPORATION PBFC-2, Las Vegas, Nevada, USA, June 12-17, 2005 100 0 0 100 200 300 400 500 600 Energy density ( Wh/L ) Fig. Energy density comparison with commercial secondary batteries. Why Li and S for electrode active material? (1) Lithium Sulfur -. Atomic weight: 32.06g/mol -. Light yellow solid (2.07g/cm3) -. Non-toxic, “green” material -. Abundant and cheap (28 US$/ton) -. Theoretical capacity: 1.675 Ah/g -. Atomic weight: 6.94g/mol -. Lightest alkali metal (0.54g/cm3) -. Silvery, metallic solid -. Theoretical capacity: 3.86Ah/g -. E = -3.045VSHE Group** Period 1 IA 1A 18 VIIIA 8A 1 1 2 IIA 2A H 1.008 3 2 3 4 5 6 14 IVA 4A 15 VA 5A 16 VIA 6A 17 VIIA 7A 2 He 4.003 10 4 5 6 7 8 9 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 Na Mg 22.99 19 11 IB 1B 12 IIB 2B 13 14 15 16 17 18 Al Si P S Cl Ar 26.98 28.09 30.97 32.07 35.45 39.95 28 29 30 31 32 33 34 35 36 Co Ni Cu Zn Ga Ge As Se Br Kr 58.47 45 58.69 46 63.55 47 65.39 48 69.72 49 72.59 50 74.92 51 78.96 52 79.90 53 83.80 54 4 IVB 4B 5 VB 5B 6 VIB 6B 7 VIIB 7B 8 24.31 3 IIIB 3B 20 21 22 23 24 25 26 27 K Ca Sc Ti V Cr Mn Fe 39.10 37 40.08 38 44.96 39 47.88 40 50.94 41 52.00 42 54.94 43 55.85 44 9 10 ------- VIII ------------- 8 ------- Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 85.47 55 87.62 56 88.91 57 91.22 72 92.91 73 95.94 74 (98) 75 101.1 76 102.9 77 106.4 78 107.9 79 112.4 80 114.8 81 118.7 82 121.8 83 127.6 84 126.9 85 131.3 86 Cs Ba La* Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 87 7 13 IIIA 3A 88 89 109 110 111 112 114 116 118 Fr Ra Ac~ Rf Db Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () 58 Lanthanide Series* Actinide Series~ 104 59 105 106 107 62 108 60 61 68 69 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 140.1 90 140.9 91 144.2 92 (147) 93 150.4 94 152.0 95 63 157.3 96 64 158.9 97 65 162.5 98 66 164.9 99 67 167.3 100 168.9 101 173.0 102 70 175.0 103 71 Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) Courtesy of Prof. K.Kim, Gyeongsang National University, Korea http://periodic.lanl.gov Why Li / S battery ? Comparison of various secondary batteries. System Negative electrode Positive electrode Voltage (V) Th. Cap. (mAh/g) Th. En. (Wh/kg) Ni-Cd Cd NiOOH 1.2 162 219 Ni-MH MH alloy NiOOH 1.2 ~178 ~240 Li-Ion LixC6 Li1-xCoO2 3.6 137 (for x=0.5) 360 Li-S Li S 2.1 1,675 2,600 Li-FeS2 Li FeS2 1.5 893 1,273 Comparison of various raw materials for lithium secondary batteries. Iron (Fe) Nickel (Ni) Manganese (Mn) Cobalt (Co) Copper (Cu) Molybdenum (Mo) Sulfur (S) Cost (US$/ton) 135 (Fe ore) 12,350 564 (Mn ore) 41,850 2,770 46,260 28 Atomic weight (g/mol) 55.85 58.69 54.94 58.93 63.55 95.94 32.06 Courtesy of Prof. K.Kim, Gyeongsang National University, Korea The lithium-sulfur battery The Li/S concept is not new. However, so far limited progress due to a series of practical issues Major Issues: solubility of the polysulphides LixSy in the electrolyte (loss of active mass low utilization of the sulphur cathode and in severe capacity decay upon cycling) low electronic conductivity of S , Li2S and intermediate Li-S products (low rate capability, isolated active material) Reactivity of the lithium metal anode (dendrite deposition, cell shorting, safety) R&D is required to improve the performance of super-batteries, such as Li-S or Li-O2 to meet the HEV-EV requirement Large investments are in progress . worldwide to reach this important goal Our approach: Total renewal of the battery chemistry, including all three components, i.e. anode, electrolyte and cathode. ANODE Conventional :Li metal our work : Sn-C nanocomposite (gain in reliability and in cycle life) ELECTROLYTE Conventional : liquid organic our work : gel-polymer membrane (gain in safety and cell fabrication) CATHODE Conventional : sulfur-carbon our work : C- Li2S composite Conventional : liquid organic (Li-metal-free battery ) (Li metal battery) Jusef Hassoun and Bruno Scrosati, Angew. Chem. Int. Ed. 2010, 49, 2371 http://www.wiley-vch.de/vch/journals/2002/press/201010press.html THE BATTERY e- e- − V + Specific advantages Control of lithium sulphide solubility (specifically designed polymer electrolyte) Easiness of fabrication (polymer configuration; match between anode and cathode specific capacity) Safety ( no lithium metal anode; no LiPF6 in the electrolyte; chemical stability of electrodes) Low cost ( abundant materials; simple preparation) SnC nanocomposite / gel electrolyte/ Li2S-C cathode sulfur lithium-ion polymer battery High energy density (about 3 times that offered by common lithium ion batteries) and plastic design. Jusef Hassoun and Bruno Scrosati, Angew. Chem. Int. Ed. 2010, 49, 2371 http://www.wiley-vch.de/vch/journals/2002/press/201010press.html 26 Acknowledgement Funds Italian Ministry of Education , University and Resarch, MIUR , PRIN 2007 Project and SIID Project “REALIST” (Rechargeable, advanced, nano structured lithium batteries with high energy storage) sponsored by Italian Institute of Technology.