Transcript Document
LARGE IGNEOUS PROVINCES: Results of Delamination? Don L. Anderson Caltech 1 A new GSA book 2 Delamination: The Eclogite Engine • Kay, R.W. & Kay, S.M., Delamination and delamination magmatism, Tectonophysics, 219, 177-189, 1993. • mechanism can explain some longstanding geophysical problems, e.g. – subsidence prior to LIP emplacement – short duration – bottoming of seismic tomography anomalies beneath “hot spots” • but what happens to this lower crust? 3 Summary of model • When crust thickens to > 50 km: – converts to dense eclogite – delaminates – sinks – heats up – rises • eclogites have low Vs for their density may be confused with high T 4 Rocks and minerals arranged by density: crust & upper mantle Figure 3: Rocks and minerals arranged by density SHEAR VELOCITY (P=0) Rock type STP density 3 Vs (km/s) 4 5 6 km/s (g/c c ) A' CRUST A" granite 2.62 gabbro dolerite 2.87 2.93 gneiss 2.98 eclogites & 3.45 arc eclogites 3.46 (arclogites,arcl)3.48 " 3.62 UPPER harzburgite MANTLE dunite pyrolite peridotite 3.30 3.31 3.38 3.42 usual max. crustal thickness 50 km unstable root eclogite Vp= 8.1 km/s Vp= 8.4 km/s Vp= 8.3 Km/s UPPER MANTLE eclogite: here used as a general term for garnet & pyroxene-rich rock 5 Rocks and minerals arranged by density: crust & upper mantle Figure 3: Rocks and minerals arranged by density SHEAR VELOCITY (P=0) Rock type STP density 3 Vs (km/s) 4 5 6 km/s (g/c c ) A' CRUST A" granite 2.62 gabbro dolerite 2.87 2.93 gneiss 2.98 eclogites & 3.45 arc eclogites 3.46 (arclogites,arcl)3.48 " 3.62 UPPER harzburgite MANTLE dunite pyrolite peridotite 3.30 3.31 3.38 3.42 usual max. crustal thickness 50 km unstable root eclogite Vp= 8.1 km/s Vp= 8.4 km/s Vp= 8.3 Km/s UPPER MANTLE • delaminates when crust > 50 km thick • warmer than MORB 6 Low-velocity Zones density Vs (g/cc) (km/s) granite 2.62 3.62 gabbro dolerite 2.87 2.93 3.84 3.78 gneiss 2.98 4.03 eclogites & arc eclogites (arclogites) " 3.45 3.46 3.48 3.62 4.60 4.77 4.68 4.80 3 4 5 6 km/s Rocks and minerals arranged by density: upper mantle A' CRUST A" UPPER MANTLE 100 usual max. crustal thickness 50 km unstable root eclogite Vp= 8.1 km/s harzburgite 3.30 4.90 Where does delaminate buoyancy? dunite 3.31 4.84 reach Vp= 8.4 neutral km/s UPPER B 185 380 TZ C' 480 580 C" 650 720 D' pyrolite peridotite arcl(highMgO) eclogite Hawaii Lhz. arcl(highMgO) r 3.38 3.42 3.45 3.46 3.47 3.48 4.82 4.76 4.60 4.77 4.72 4.68 stable magnesiowustite pv ca pv 3.59 3.60 " " 3.60 3.63 3.67 3.70 3.68 3.70 3.74 3.75 3.75 4.04 4.11 4.13 LOWER MANTLE (STP ) 4.15 5.54 5.43 5.33 5.20 4.93 4.84 5.40 5.69 5.5+ 4.91 4.93 4.93 5.6+ 4.98 6.62 5.50 6.40 eclogite Vp=8.1 km/s 4 8.1 km/s 3 -spinel(.1FeO) (.12FeO) pyrolite(410km) majorite arcl(lowMgO) " pyrolite(500km) -spinel(.1FeO) MORB(mj+coe) archlogites (low MgO) " MORB(mj+st) MANTLE Vp= 8.3 Km/s Vs 4 5 6 km/s X 410 km 9.3 km/s 8.3km/s 9.7 km/s eclogite 500 km 8.6 km/s ultra-stable (when cold) 11 km/s eclogite oceanic crust 650 km Ca,Al-poor, Si,Fe-rich I LOWER MANTLE Repetti Discontinuity 7 Delaminated roots warm quickly • will start to melt before reaching same T as surrounding mantle • already in TBL, so starts off warm • when 30% melt, garnet mostly gone & will start to rise 8 SHEAR VELOCITY (P=0) Rock type Vs (km/s) STP • pink eclogite is only temporarily stable at these depths • “arclogites” less SiO2 than MORB eclogite – do not sink so far • Vs of eclogite low at depth • low melting point • as it warms, it rises density3 4 5 6 km/s (g/cc) A' CRUST A" granite 2.62 gabbro dolerite 2.87 2.93 gneiss 2.98 eclogites & arc eclogites (arclogites,arcl) " 3.45 3.46 3.48 3.62 UPPER harzburgite MANTLE dunite pyrolite peridotite B arcl(highMgO) eclogite Hawaii Lhz. arcl(highMgO) usual max. crustal thickness 50 km unstable root Vp= 8.1 km/s 3 .3 0 3 .3 1 3 .3 8 3 .4 2 3.45 3.46 3.47 3.48 C' C" -spinel(.1FeO) (.12FeO) pyrolite(4 1 0 km) majorite arcl(lowMgO) " pyrolite(5 0 0 km) -spinel(.1FeO) MORB(mj+coe) archlogites (low MgO) " MORB(mj+st) 3.59 3.60 " " 3.60 3.63 3 .6 7 3.70 3.68 3.70 3.74 3.75 3.75 magnes iowus tite 4 .0 4 perovs kite(pv) 4 .1 1 c alc ium pv 4 .1 3 LOWER MANTLE 4 .1 5 D' UPPER MANTLE Vp= 8.4 km/s Vp= 8.3 Km/s stable eclogite Vp=8.1 km/s 8.1 km/s 3 TZ eclogite 4 5 6 km/s X 410 km 9.3 km/s 8.3km/s 9.7 km/s eclogite 500 km 8.6 km/s ultra-stable (when cold) eclogite oceanic crust 650 km 11 km/s Ca,Al-poor, Si,Fe-rich I 1 0 0 0 km Repetti Discontinuity 9 Mantle stratification • irregular chemical discontinuities expected • difficult to see in tomography • can be seen in receiver functions 10 Underside reflections 0 – 1,000 km depth • 410 & 660-km discontinuities clear • ~ 10 others • may be chemical 11 ROOT FORMA TION Delamination cycle • dense roots – fall off – warm up in ambient mantle – rise • possible mechanism for Atlantic & Indian ocean plateaus & DUPAL anomaly 1 D ELA MINA TION ridge 2 SPREA D ING 3 heating UPWELLING 4 SPREA D ING 5 12 Many ways for eclogite to get into the mantle • collision belts, arcs • can fuel melting anomalies at normal T 13 LIPs are associated with continental breakup • reconstruction at ~ 30 Ma • dual volcanism – on breakup – ~ 30-40 Myr later • oceanic plateaus form ~ 1,000 km offshore • = rising of delaminated root? 14 Eclogite 70% molten before peridotite starts to melt • eclogite sinkers warmed by conduction • rise before T has risen to that of ambient mantle • eclogite 70% molten at peridotite solidus 15 • delamination controls crustal thickness • very sharp cutoff at 50 km • interpreted as eclogite phase change from Mooney et al., 1998 16 Example 1: Rio Grande rift Are LVZs delaminated roots? hot? from Gao et al., 2004 17 Example 2: Sierra Nevada garnet peridotite garnet pyroxenite P-wave slowness attenuation Vp/Vs anisotropy from Boyd et al., 2004 18 Example 3: Iceland • • • • Restricted LVZ possibly Caledonian arc roots delaminated on breakup Cold, dense, sinking eclogite can be LVZ warmed, melted, rising eclogite can also be buoyant if ~ 1/2 garnet eliminated Ritsema et al., 1999 19 Summary • Dense, mafic cumulates may be twice the thickness of arc crust • Delamination accompanied by upwelling & adiabatic decompression of the asthenosphere; a whole cycle may take 30-40 Myr • The global recycling flux of arcologite is ~ 10% that of oceanic crust, i.e. ~ hotspot volume rate • It starts out hotter & by-passes normal subduction zone processing • Delaminated arclogites preferentially melt & form a unique component of hotspot & ridge magmas (e.g. suggested DUPAL = Gondwana crust). 20 Resources Please visit: www.mantleplumes.org/Eclogite.html www.mantleplumes.org/LowerCrust.html End 21