Transcript Slide 1
Wave Travel and Attenuation and Machine Foundations Richard P. Ray, Ph.D., P.E. Civil and Environmental Engineering University of South Carolina USC Topics for Today Waves in Elastic Media Waves in the Earth Surface Excitations Machine Foundations USC Waves Compression, P Primary (1-D) Shear,S Secondary (1-D) Rayleigh, R Surface (2-D) http://paws.kettering.edu/~drussell/demos.html USC Discrete Properties Resonant Column - MOC - Wavelets USC Surface Block Mass Δz1 Soil 1: G1,ρ1,μ1 .. .. Soil j: Gj,ρj,μj .. .. Computational Reaches Nodes Vertical Propagation Soil m: Gm,ρm,μm Horizontal Polarization τi,Vi Δzi A P B Δzn-1 Rock Motion Resonant Column - MOC - Wavelets t=0......1.......2......3 USC D z1 B.C. : τ P 0 C A11 P + C 1 A2 C B 2 D z2 A C B 3 D z3 3 C BA4 D z4 4 CC+ CC+ P 2 P 3 CC+ P 4 CB55 P BC.C . : V P f (t ) Dt 5 C+ characteristic: dτ dV ρνs 0 and dt dt dz νs dt P - A - AP v AP ( V P - V A ) = 0 = shearing stress; V = particle velocity. S = phase (shear wave) velocity; = mass density; t = time; C- characteristic: dτ dV dz ρνs 0 and νs dt dt dt P - B + BP v BP ( V P - V B ) = 0 Resonant Column - MOC - Wavelets USC Nonlinear Interpolation τ τ γ 1 α Go C1 τ m γγ i ττ and 2 2 Gtan i R 1 dτ dV ρνs 0 dt dt τ P - τ R - ρRP vRP ( V P - V R ) = 0 for γ and τ A3 A2 Rtime Go 1 αR τ C1τ max R 1 and dz νs dt Gtan νs ρ C3 Resonant Column - MOC - Wavelets Rspace C2 Dz Dt B3 A C+ C Sspace Stime B2 P C- B USC Stress Strain at Reach 30 3.00E+03 2.00E+03 30 Δz 31 τ ave τ30 τ31 / 2 γave δ30 δ31 / Dz Stress 1.00E+03 0.00E+00 Reach 30 -1.00E+03 -2.00E+03 -3.00E+03 -2.50E-03 -1.50E-03 -5.00E-04 5.00E-04 1.50E-03 2.50E-03 Strain Resonant Column - MOC - Wavelets USC Moc vs Shake Surf Velocity 2.00E+00 Moc Surf Velocity Edushake Vel Outcrop 1.50E+00 Velocity (ft/sec) 1.00E+00 5.00E-01 0.00E+00 -5.00E-01 -1.00E+00 -1.50E+00 -2.00E+00 -2.50E+00 10 12 Resonant Column - MOC - Wavelets 14 16 Time (sec) 18 20 USC P - A - AP v AP ( V P - V A ) = 0 P - B + BP vBP ( V P - V B ) = 0 dW t Dt t dSH V D V j V j 1 1 dKE Dz 2 2 d dV m Dz j j 1 4 SH Dt Fdt Vbaset Dt Vbase t base t Dt base t 4 2 ( τ j τ j 1 τ j old τ j 1 old ) (δ j 1 δ j ) (δ j 1 old δ j old ) Resonant Column - MOC - Wavelets USC Work-Energy 1.80E+03 1.20E+00 1.60E+03 1.00E+00 1.40E+03 Energy (ft-lb) 1.20E+03 8.00E-01 1.00E+03 Total Work 6.00E-01 8.00E+02 Hysteretic Energy 6.00E+02 Kinetic Energy 4.00E-01 Energy Ratio 4.00E+02 2.00E-01 2.00E+02 0.00E+00 0.00E+00 0 5 10 15 20 25 30 Time (sec) Resonant Column - MOC - Wavelets USC Cumulative Hysteretic Energy Reach Number Strain 400 Resonant Column - MOC - Wavelets Time (sec) Hyst 400 USC Wavelets A1 A2 A3 A4 USC Resonant Column - MOC - Wavelets USC Profile View USC MEMS Accelerometer USC Data Acquisition USC Wavelets Resonant Column - MOC - Wavelets USC Wavelets Resonant Column - MOC - Wavelets USC ( n ' n ) δt Wn ( s ) xn ' ψ * ' s n 0 N 1 Localized Time Index Wavelet Scale Fourier Transform Wavelet via Fourier Transform By varying the wavelet scale s and translating along the localized time index n, one can construct a picture showing both the amplitude of any features versus the scale and how this amplitude varies with time. Resonant Column - MOC - Wavelets USC Resonant Column - MOC - Wavelets USC Wavelets Resonant Column - MOC - Wavelets USC r -2 r -2 r -0.5 + - + Rayleigh wave Vertical Horizontal component component + Shear wave + Relative amplitude - r -1 + + Shear window r r -1 Waves Fundamentals-Modeling-Properties-Performance Wave Type Percentage of Total Energy Rayleigh 67 Shear 26 Compression 7 USC Free-Field Analytical Solutions ur uz r L V u z (r , ,0) i 03 RV (a0 ) H 02 2 CR M 0V 2 r ur (r , ,0) i R ( a ) H V 0 1 3 2 CR Fundamentals-Modeling-Properties-Performance USC Free-Field Analytical Solutions ur uz r L V u z (r , ,0) i 03 RV (a0 ) H 02 2 CR M 0V 2 r ur (r , ,0) i R ( a ) H V 0 1 3 2 CR Fundamentals-Modeling-Properties-Performance USC Fundamentals-Modeling-Properties-Performance USC Fundamentals-Modeling-Properties-Performance USC Fundamentals-Modeling-Properties-Performance USC Fundamentals-Modeling-Properties-Performance USC Fundamentals-Modeling-Properties-Performance USC Trench Isolation Karlstrom and Bostrom 2007 Fundamentals-Modeling-Properties-Performance USC Chehab and Nagger 2003 Fundamentals-Modeling-Properties-Performance USC Celibi et al (in press) USC ATST Telescope and FE Model Fundamentals-Modeling-Properties-Performance USC Summary and Conclusions (Cho, 2005) 1. 2. 3. 4. 5. High fidelity FE models were created Relative mirror motions from zenith to horizon pointing: about 400 mm in translation and 60 mrad in rotation. Natural frequency changes by 2 Hz as height changes by 10m. Wind buffeting effects caused by dynamic portion (fluctuation) of wind Modal responses sensitive to stiffness of bearings and drive disks 6. Soil characteristics were the dominant influences in modal (dynamic) behavior of the telescopes. 7. 8. 9. Fundamental Frequency (for a lowest soil stiffness): OSS=20.5hz; OSS+base=9.9hz; SS+base+Coude+soil=6.3hz A seismic analysis was made with a sample PSD ATST structure assembly is adequately designed: 1. Capable of supporting the OSS 2. Dynamically stiff enough to hold the optics stable 3. Not significantly vulnerable to wind loadings Fundamentals-Modeling-Properties-Performance USC Foundation Movement Z Y θ φ X ψ Fundamentals-Modeling-Properties-Performance USC Design Questions (1/4) How Does It Fail? Static Settlement Dynamic Motion Too Large (0.02 mm) Settlements Caused By Dynamic Motion Liquefaction What Are Maximum Values of Failure? (Acceleration, Velocity, Displacement) Fundamentals-Modeling-Properties-Design-Performance USC Velocity Requirements 0,40 Massarch (2004) "Mitigation of Traffic-Induced Ground Vibrations" Fundamentals-Modeling-Properties-Performance USC 300 800 Fundamentals-Modeling-Properties-Performance USC Design Questions (2/4) What Are Relations Between Loads And Failure Quantities? Loads -Harmonic, Periodic, Random Load→ Structure → Foundation → Soil → Neighboring Structures Model: Deterministic or Probabilistic Fundamentals-Modeling-Properties-Performance USC Design Questions (3/4) How Do We Measure What Is Necessary? Full Scale Tests Prototype Tests Small Scale Tests (Centrifuge) Laboratory Tests (Specific Parameters) Computer Model Fundamentals-Modeling-Properties-Performance USC USC Design Questions (4/4) What Factor of Safety Do We Use? Does FOS Have Meaning What Happens After There Is Failure Loss of Life Loss of Property Loss of Production Purpose of Project, Design Life, Value Fundamentals-Modeling-Properties-Performance USC r -2 r -2 r -0.5 + - + Rayleigh wave Vertical Horizontal component component + Shear wave + Relative amplitude - r -1 + + Shear window r r -1 Waves Fundamentals-Modeling-Properties-Performance Wave Type Percentage of Total Energy Rayleigh 67 Shear 26 Compression 7 USC r -2 r -2 r -0.5 + - + Rayleigh wave Vertical Horizontal component component + Shear wave + Relative amplitude - r -1 + + Shear window r r -1 Waves Fundamentals-Modeling-Properties-Performance Wave Type Percentage of Total Energy Rayleigh 67 Shear 26 Compression 7 USC Modeling Foundations Lumped Parameter (m,c,k) Block System Impedance Functions Function of Frequency (ω), Layers Boundary Elements (BEM) Parameters Constant, Layers, Special Infinite Boundary, Interactions, Layers Finite Element/Hybrid (FEM, FEM-BEM) Complex Geometry, Non-linear Soil Fundamentals-Modeling-Properties-Performance USC Lumped Parameter P Po sin( t ) r m m c Gνρ k mz cz kz P0 sin(t ) Fundamentals-Modeling-Properties-Performance USC Single Degree of Freedom mz z c z z k z z 0 m mz z Inertia Force (kg ) or ( N ) c 2 sec N sec m c z z Dam pingForce or ( N ) m sec z m k N k z z Spring Force (m) or ( N ) m USC Single Degree of Freedom mz z cz z k z z 0 solution will take form z e ....... constant st where (m s2 cs k ) e st 0 k st 2 divideby m e and set n m c 2 2 then s s n 0 m solution for s dependson c c=0…Undamped c=2mω…Critically Damped c<2mω…Underdamped USC Single Degree of Freedom c 2 s s n 0 undampe d ...s in m in t i n t z (t ) 1e 2 e where 1 , 2 f (init. cond.) 2 Euler' s identity eint cos(nt ) i sin(nt ) z (t ) A sin(nt ) B cos( t ) A, B f (initial condition) z (0) B and z(0) An z (0) sin(nt ) z (0) cos(nt ) z (t ) z(0) n z(0) t USC Single Degree of Freedom c 2 s s n 0 if dam pingpresent m 2 2 c c 2 then s n 2m 2m critical c if 0 then c ccrit 2mn and s n 2m n t z (t ) (1 2t )e where 1 , 2 f (init. cond.) z(0) z(0) z (t ) z (0)(1 nt ) z (0)t e nt t USC Single Degree of Freedom if c 2mnthen suppose D c ccrit then s Dn 0 u n de rdam pe d dam pingratio and D n 1 D 2 Dn 2 n 2 Dn i D z (t ) 1e Dnt i Dt 2 e Dnt i Dt e Dnt 1e i Dt 2 e i Dt z (t ) e D n t z (t ) e D n t ( A sin( D t ) B cos( D t ) z (0) z (0) Dn sin( D t ) z (0) cos( D t ) D See Chart USC Single Degree of Freedom P Po sin(P t ) mz z cz z kz z P0 sin(P t ) ze n Dt A sin( Dt ) B cos Dt P0 k m c 2 2 P c P tan 2 k m P k n m 2 2 m sin P t c k P P 2 D n 2 P 1 n D n 1 D 2 D c ccrit ccrit 2 km USC SDOF Transient and Steady-State USC z (t ) P0 k m c 2 2 P z max P0 k z max z static 2 2 sin P t P 1 1 P n 2 2 2 2 D P n 1 1 P n 2 2 2 2 D P n USC Dynamic Magnification (Logarithmic) 100 D=0.02 D=0.05 D=0.10 D=0.20 D=0.50 Magnification 10 1 0.1 0.1 1 Frequency Ratio (P/n) Fundamentals-Modeling-Properties-Performance 10 USC Lumped Parameter System Z Kz Cz Iψ mz z cz z kz z P0 sin(P t ) Kx m ψ X Cx Kψ Cψ/2 Cψ/2 Fundamentals-Modeling-Properties-Performance USC Lumped Parameter Values Mode Vertical z Horizontal x Rocking ψ Torsion θ Stiffness k 4Gr 1 8Gr 2 8Gr 3 3(1 ) 16Gr 3 3 Mass Ratio m ˆ m m(1 ) 4 r 3 m(2 ) 8r 3 3I (1 ) 8r 5 I r 5 Damping Ratio, D 0.425 mˆ 1 / 2 0.288 mˆ 1/ 2 0.15 (1 mˆ )mˆ 1/ 2 0.50 1 2 mˆ D=c/ccr G=Shear Modulus ν=Poisson's Ratio r=Radius ρ=Mass Density Iψ,Iθ=Mass Moment of Inertia Fundamentals-Modeling-Properties-Performance USC Design Example 1 VERTICAL COMPRESSOR Unbalanced Forces •Vertical = 45 kN •Horzontal Primary = 0,5 kN •Operating Speed = 450 rpm •Wt Machine + Motor = 5 000 kg DESIGN CRITERION: Smooth Operation At Speed Velocity <0,10 in/sec Displacement < 0,002 in <0,05mm Soil Properties Shear Wave Velocity Vs = 250 m/sec Density, ρ = 1600 kg/m3 Shear Modulus, G = 1,0e8 Pa Poisson's Ratio, ν = 0,33 Jump to Chart Fundamentals-Modeling-Properties-Performance USC 4Gr 4 1,0 108 r k (1 ) 0,667 Q0 (1 )Q0 0,667(45 000)1000 0,05m m kz 4Gr 4 1,0 108 r 0.075 r 1.5m 0.05 Try a 3 x 2,5 x 1 foundation block, r = 1,55 m Mass = 18 000 kg Total Mass = 18 000 + 5 000 = 23 000 kg Z static m(1 ) mˆ 4 r 3 mˆ (1 ) m 0,67 23 000 0,65 3 3 4r 4 16001,55 0,425 1 0,53 M z 1,0 mˆ 2D Z dynamic Z static 0,05m m D Fundamentals-Modeling-Properties-Performance Jump to Figure USC Design Example - Table Top 5m Q0=1800 N m=250 000 kg Iψ=1,0 x 107 N-m-sec2 10m X 5m 4m ψ DESIGN CRITERION 5.0 mm/sec Horizontal Motion at Machine Centerline X = 0,04 mm from combined rocking and sliding Speed = 160 rpm Slower speeds, X can be larger Soil Properties Shear Wave Velocity Vs = 200 m/sec Shear Modulus, G = 6,80x107 Pa Density, γ = 1700 kg/m3 Poisson's Ratio, ν = 0,33 Fundamentals-Modeling-Properties-Performance USC Horizontal Translation Only Equivanlent r D lw 10 5 0,288 0,41 Magx 1,2 1/ 2 mˆ 2 m 0,49 3 8 r Q 1800 2 0,33 3 0 1 , 3 10 mm 7 kx 8 6,8 10 3,99 3,99m mˆ X static Rocking About Point "O" Ax = 40x10-3 mm lw3 4 10 53 Equivalent r 3,39m 320 rpm 33,5 rad / sec 3 3 8Gr 3 8 6,80107 3,393 k 1,0541010 N / rad 3(1 ) 3(1 0,33) 4 n k I 1,0541010 32,4 rad / sec 1,0 107 3(1 ) I 3(0,67) 1,0 107 mˆ 3,29 8 r 5 8 1700(3,39)5 0,15 0,15 D 0,019 Mag 25,0 (1 mˆ ) mˆ (1 3,29) 3,29 Fundamentals-Modeling-Properties-Performance USC Static Mom ent About Base M 0 1800 5 9000 N m Static AngularDeflection s Mo 9000 7 8 . 54 10 rad 10 k 1.05410 HorizontalMotion X s h 8.54107 4 3,4 103 m m At Resonance 25,0(3,4 103 ) 85,0 103 m m X = 40x10-3 mm Dynamic Magnification (Linear) X 30 0,02 ψ Magnification 25 0,05 20 15 0,1 10 0,2 5 0,5 0 0,0 0,5 1,0 1,5 Frequency Ratio ( P / n) Fundamentals-Modeling-Properties-Performance 2,0 USC Impedance Methods Based on Elasto-Dynamic Solutions Compute Frequency-Dependent Impedance Values (Complex-Valued) Solved By Boundary Integral Methods Require Uniform, Single Layer or Special Soil Property Distribution Solved For Many Foundation Types Fundamentals-Modeling-Properties-Performance USC Impedance Functions P Poeit Po cos( t ) i sin(t ) Sz Rz 2K Sz K iC K STATIC k ( ) i C DSOIL Az Soil Damping Radiation Damping Jump Wave Fundamentals-Modeling-Properties-Performance USC