NEW MODELS FOR HIGH AND LOW FREQUENCY VOLATILITY …

Download Report

Transcript NEW MODELS FOR HIGH AND LOW FREQUENCY VOLATILITY …

NEW MODELS FOR HIGH AND LOW FREQUENCY VOLATILITY Robert Engle NYU Salomon Center Derivatives Research Project

FORECASTING WITH GARCH

DJ RETURNS

.08

.06

.04

.02

.00

-.02

-.04

-.06

-.08

1990 1992 1994 1996 1998 2000 2002 2004 DJRET

DOW JONES SINCE 1990

Dependent Variable: DJRET Method: ML - ARCH (Marquardt) - Normal distribution Date: 01/13/05 Time: 14:30 Sample: 15362 19150 Included observations: 3789 Convergence achieved after 14 iterations Variance backcast: ON GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) Coefficient Std. Error z-Statistic Prob. C 0.000552

0.000135 4.093478

0.0000

Variance Equation C RESID(-1)^2 GARCH(-1) 9.89E-07 0.066409

0.924912

1.84E-07 5.380913 0.0000

0.004478 14.82844

0.0000

0.005719 161.7365

0.0000

R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood -0.000370

-0.001163

0.010200

0.393815

12427.71

Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Durbin-Watson stat 0.000356

0.010194

-6.557778

-6.551191

1.985498

.45

.40

.35

.30

.25

.20

.15

.10

.05

1990 1992 1994 1996 1998 2000 2002 2004 2006 HORIZOND

.028

.024

.020

.016

.012

.008

.004

1998 1999 2000 2001 2002 2003 2004 2005 2006 DJSD DJSD1 DJSD2 DJSD3 DJSD4 DJSD5 DJSD0 DJSDEND

.32

.28

.24

.20

.16

.12

1990 1992 1994 1996 1998 2000 2002 2004 2006 HORIZONY

.45

.40

.35

.30

.25

.20

.15

.10

.05

1990 1992 1994 1996 1998 2000 2002 2004 2006 HORIZOND HORIZONM HORIZONQ HORIZONY HORIZON2Y HORIZON5Y

DEFINITIONS

 r t is a mean zero random variable measuring the return on a financial asset  CONDITIONAL VARIANCE

h t

E t

 1  

t

 UNCONDITIONAL VARIANCE 

t

2   

t

GARCH(1,1)

h t r t

2  1  

h t

 1  The unconditional variance is then  

t

2   1    

t

 

t

2    2  

t

 1 2

GARCH(1,1)

h t

  

t

r t

2  1  

h t

 1  If omega is slowly varying, then  

t

  

t

 

t

2  

t

  

t

2  1  

t

2 

j t

  0   

j

This is a complicated expression to interpret

SPLINE GARCH

 Instead , use a multiplicative form

r t

 

t g t

t

, where 

t

| 

t

 1

N

(0,1) 

g t

  )     

r t t

2  1  1    

g t

 1 Tau is a function of time and exogenous variables

UNCONDITIONAL VOLATILTIY

 Taking unconditional expectations

E r t

2 

t t

t

2 )  

t

 

t

 

t

 Thus we can interpret tau as the unconditional variance.

SPLINE

 ASSUME UNCONDITIONAL VARIANCE IS AN EXPONENTIAL QUADRATIC SPLINE OF TIME  For K knots equally spaced log     0  1

t

  2

t

2 

k K

  1 

k

  max 

t

t k

, 0    2

ESTIMATION

 FOR A GIVEN K, USE GAUSSIAN MLE

L

  1 2

t T

  1   log  

t g t

  2 

r t t g t

   CHOOSE K TO MINIMIZE BIC FOR K LESS THAN OR EQUAL TO 15

EXAMPLES FOR US SP500

 DAILY DATA FROM 1963 THROUGH 2004  ESTIMATE WITH 1 TO 15 KNOTS  OPTIMAL NUMBER IS 7

RESULTS

LogL: SPGARCH Method: Maximum Likelihood (Marquardt) Date: 08/04/04 Time: 16:32 Sample: 1 12455 Included observations: 12455 Evaluation order: By observation Convergence achieved after 19 iterations C(4) W(1) W(2) W(3) Coefficient Std. Errorz-Statistic Prob. -0.000319 7.52E-05 -4.246643 0.0000

-1.89E-08 2.59E-08 -0.729423 0.4657

2.71E-07 2.88E-08 9.428562 0.0000

-4.35E-07 3.87E-08 -11.24718 0.0000

W(4) W(5) W(6) W(7) C(5) 3.28E-07 5.42E-08 6.058221 0.0000

-3.98E-07 5.40E-08 -7.377487 0.0000

6.00E-07 5.85E-08 10.26339 0.0000

-8.04E-07 9.93E-08 -8.092208 0.0000

1.137277 0.043563 26.10666 0.0000

C(1) 0.089487

C(2) 0.881005

Log likelihood Avg. log likelihood Number of Coefs.

0.002418 37.00816 0.0000

0.004612 191.0245 0.0000

-15733.51

-1.263228

11 Akaike info criterion Schwarz criterion Hannan-Quinn criter.

2.528223

2.534785

2.530420

S&P500 1.2

1.0

0.8

0.6

0.4

0.2

0.0

60 65 70 75 80 85 90 95 00 CVOL UVOL

India,5 1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

90 92 CVOL 94 96 UVOL 98 00 02 ANNUAL RV

Argentina, 3 4 3 2 1 0 90 92 CVOL 94 96 UVOL 98 00 02 ANNUAL RV

Japan,4 1.0

0.8

0.6

0.4

0.2

0.0

90 92 CVOL 94 96 UVOL 98 00 02 ANNUAL RV

Brazil,6 3.0

2.5

2.0

1.5

1.0

0.5

0.0

90 92 CVOL 94 96 UVOL 98 00 02 ANNUAL RV

South Africa,3 .9

.8

.7

.6

.5

.4

.3

.2

.1

.0

90 92 CVOL 94 96 UVOL 98 00 02 ANNUAL RV

Poland,1 1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

90 92 CVOL 94 96 UVOL 98 00 02 ANNUAL RV

ESTIMATION

    Volatility is regressed against explanatory variables with observations for countries and years.

Within a country residuals are auto correlated due to spline smoothing. Hence use SUR.

Volatility responds to global news so there is a time dummy for each year.

Unbalanced panel

ONE VARIABLE REGRESSIONS

emerging transition log(mc) log(gdp_dll) nlc grgdp gcpi vol_irate vol_forex vol_grgdp vol_gcpi Coefficient 0.0957

-0.0077

-0.0093

0.0015

-1.29E-05 -0.6645

0.6022

0.0089

0.5963

1.1192

0.9364

Table (5) Individual SUR Regressions

Std. Error 0.0176

0.0180

0.0032

0.0055

0.0000

0.1255

0.0418

0.0006

0.0399

0.1008

0.0848

t-Statistic 5.4528

-0.4284

-2.9345

0.2740

-2.3706

-5.2945

14.4181

14.4896

14.9468

11.1056

11.0375

Prob. 0.0000

0.6685

0.0035

0.7842

0.0181

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Det Residual Covariance 6.45E-39 1.53E-38 3.76E-38 2.18E-37 1.23E-37 3.89E-38 1.64E-38 8.59E-39 2.47E-38 8.71E-39 2.84E-38

MULTIPLE REGRESSIONS

emerging transition log(mc) log(gdpus) nlc grgdp gcpi vol_irate vol_gforex vol_grgdp vol_gcpi All Countries 0.0376

( 0.0131 )** -0.0178

( 0.0171 ) -0.0092

( 0.0055 )* 0.0273

( 0.0068 )** -1.8E-05 ( 5.4E-06 )** -0.1603

( 0.1930 ) 0.3976

( 0.1865 )** 0.0020

( 0.0008 )** 0.0222

( 0.0844 ) 0.8635

( 0.1399 )** 0.9981

( 0.3356 )**

Time Effects 0.25

0.2

0.15

0.1

0.05

0 1990 1994 1998 2002

IMPLICATIONS

 Unconditional volatility varies over time and can be modeled  Volatility mean reverts to the level of unconditional volatility  Long run volatility forecasts depend upon macroeconomic and financial fundamentals

HIGH FREQUENCY VOLATILITY

WHERE CAN WE GET IMPROVED ACCURACY?

 USING ONLY CLOSING PRICES IGNORES THE PROCESS WITHIN THE DAY.

 BUT THERE ARE MANY COMPLICATIONS. HOW CAN WE USE THIS?

ONE MONTH OF DAILY RETURNS

21 20 19 18 17 16 9000 9100 9200 9300 9400 9500 9600 9700 9800 PRICEDAY

INTRA-DAILY RETURNS

21 20 19 18 17 16 9000 9100 9200 9300 9400 9500 9600 9700 9800 PRICEDAY PRICE10

ARE THESE DAYS THE SAME?

CAN WE USE THIS INFORMATION TO MEASURE VOLATILITY BETTER?

 DAILY HIGH AND LOW

hl t

range

 log(

high t

low t

)  DAILY REALIZED VOLATILITY

dv t

i n

  1 log(

p

/

p

)

PARKINSON(1980)

 HIGH LOW ESTIMATOR  IF RETURNS ARE CONTINUOUS AND NORMAL WITH CONSTANT VARIANCE, ln( 2  ) 

range

    2

daily

TARCH MODEL WITH RANGE

   

C RESID(-1)^2 RESID(-1)^2*(RESID(-1)<0) GARCH(-1) RANGE(-1)^2

       

Adjusted R-squared S.E. of regression Sum squared resid Log likelihood 1.07E-06 2.03E-07 5.268049 0.0000

-0.100917 0.011398 -8.853549 0.0000

0.096744 0.010951 8.834209 0.0000

0.879976 0.010518 83.65995 0.0000

0.075963 0.008281

9.172690

0.0000

-0.001360

0.010330

0.404010

12550.46

S.D. dependent var Akaike info criterion Schwarz criterion Durbin-Watson stat 0.010323

-6.616277

-6.606403

2.001541

A MULTIPLE INDICATOR MODEL FOR VOLATILITY USING INTRA-DAILY DATA

Robert F. Engle Giampiero M. Gallo

Forthcoming, Journal of Econometrics

Absolute returns

|

r t ha t

| 

ha t

t r t

 1 2  

ha t

 1 • Insert asymmetric effects (sign of returns) ha t  | r t  1 | 2 ha t  1 • Insert other lagged indicators ha t    2  1   r ha t  1      | r t  1  1   r t  1 d t  1 t  1    r hl t 2  1   r t  1 t  1   r dv t 2  1   r t  1 t  1 ,

Repeat for daily range, hl t :

hh t

hl t

  

h

h

hl t

2  1 

hh t

t

h hh t

 1   

r h t

 1  

h hl d t

2  1

t

 1   

r h t

2  1  

r d h t

2  1

t

 1  

h dv t

2  1  

h

2

dv d t

1

t

 1 .

And for realized daily volatility, dv t :

hd t

   

d

d dv t

2  1

dv t

  

d hd t hd

 1

t

  

t

r d t

 1  

d dv d t

2  1

t

 1   

r d t

2  1  

r d d t

2  1

t

 1  

d hl t

2  1  

d

2

hl d t

1

t

 1 .

Smallest BIC-based selection

ha t

 5.026 - 0.030

2.805

1.068

r t

2  1  0.901

43.432

ha t

-1 - 0.745

3.293

r t

 1  0.101

2.328

hl t

2  1

hh t

 7.622

4.885

 0.109

5.407

hl t

2  1  0.850

32.713

hh t

 1 - 0.878

3.608

r t

 1

hd t

 8.061

 2.366

dv t

 1 2  0.736

91.479

hd t

-1 -1.183

28.350

r t

-1  0.122

6.688

dv d t

-1

t

-1  0.123

23.911

r t

2  1

Forecasting

• one step-ahead

h T

 1|

T

    

ha hh T T

 1|

T

 1|

T hd T

 1|

T

           

d a h

    

A *

T

, 2 , 2 , 2 , 2 , 2 ,

T T T T T T T T

,

T

,

T

  • multi-step-ahead

h

     

ha hh hd

              

d a h

     A    

ha hh hd

  1|

T

1|

T

1|

T

   

Ah

1|

T

Term Structure of Volatility 1

20 18 16 14 12 10 01/08/98 03/09/98 05/05/98 07/01/98 08/27/98 Absolute returns

IMPLICATIONS

    Intradaily data can be used to improve volatility forecasts Both long and short run forecasts can be implemented if all the volatility indicators are modeled Daily high/low range is a particularly valuable input These methods could be combined with the spline garch approach.