Advances in mid and far infrared coherent sources and

Download Report

Transcript Advances in mid and far infrared coherent sources and

Advances in mid and far infrared
coherent sources and their
applications
Valdas Pasiskevicius
Applied Physics, KTH
Outline
• Spectral ranges
• Application areas
• Radiation sources:
coherent vs incoherent
• MIR, FIR coherent sources:
technology options
• Developments at KTH
• Beyond state of the art
Spectral ranges
MIR: = 2 µm – 30 µm (150 THz – 10 THz)
Cr2+, Fe3+
Spectral ranges
FIR: = 300 µm – 30 µm (0.1 THz – 10 THz)
FEL
NLO
QCL
HCN
HCOOH
C2H5OH
CH3OH
D 2O
30
130
230
330
Wavelength, µm
430
530
Options: coherent vs incoherent
6
10
NLO
NLO
4
P, W/cm
-1
10
Er:ZBLAN
2
10
QCL LD
0
10
10
-2
10
-4
10
-6
-1
TBB=2000 K, =1cm , A=10 mm
0
20
40
, m
60
80
2
100
Advantages of coherent sources:
• High power
• High spectral power density
• High brightness
• High wall-plug efficiency
Advantages of incoherent sources:
• Broad range
• Inexpensive
Benefiting Applications:
• All except simple spectroscopy
Main application:
• Spectroscopy
[G. P. Williams, Rev. Sci.Instr. 73, 1461 (2002)]
Applications: Sensing
• Strong transitions at fundamental frequencies
• Molecular fingerprints
• MIR – ro-vibrational transitions (all material states)
• FIR – rotational transitions (gasses, liquids)
• FIR – collective vibrational modes (solids)
Sensing (monitoring) requirements:
• Several fixed (tunable) wavelengths
• Narrow linewidth: ~GHz or less
• High power and high brightness for DIAL and countermeasures
Applications: Proteomics
• Label-free
• Site specific information
• Time resolved protein reactions
Spores of B. thuringiensis ssp. kurstaki and B. subtilis
49760
[C. Kötting et al Proc.Nat.Acad.Sci. 103, 13911 (2006)]
[T.J.Johnson et al Chem.Phys.Lett. 403, 152 (2005)]
Applications:Imaging, Inspection
Fuel tank of Schuttle launch rocket behind foam
• Dielectric solids: no rotational DoFs
• Transparent in FIR
• Low scattering losses
THz stress-induced birefringence imaging
Carbon-fiber composite helicopter stator
[Picometrix, Inc.]
[M.Koch, OPN, 18,21 (2007)]
Applications: Fuel industry
[M.A. Aliske et al Fuel, 86, 1461 (2007)]
Applications:Surgical
MIR lasers:
• High H2O absorption
• Less tissue-specific
• Smaller heated volume
• Lower collateral damage
Applications:Surgical
Defficiencies of current procedures
Laser induced shock-wave effect on water
Er:YAG 100 ns, 50 MW/cm2
[A.Vogel et al Chem.Rev. 103, 577 (2003)]
Shock-wave damage
Applications: Detection of explosives
Applications: XUV and as pulse generation
Atom in high optical field:
Tunnel ionization , classical axceleration in electric field
XUV photon cutoff energy:  XUV  I p  3.17U p ~ I p  3.17
Ionization potential + Ponderomotive energy
E
2

2
0
[M. Levenstein et al, PRA, 49, 2117 (1994)]
High intensity (ultrashort) in MIR are advantageous
Applications: XUV and as pulse generation
[R. Kienbergeret al Nature, 427, 817 (2004)]
• CEP phase-stabilized pulses required
• Currently all-passive CEP stabilization by (2):(2) or (3) NLO processes
State of the art: QCL
1THz ~ 4.1 meV ~ 47.6 K
hphonon ~ 30meV
Main breakthroughs:
• Resonant optical-phonon depopulation
• Metal-metal waveguides
[B. S. Williams, Nature Photonics, 1, 517 (2007) ]
State of the art: Solid state lasers
Engineering toolbox:
• Crystal field – Tailorable transition energies
• Structural disorder - inhomogeneous broadening – Gain spectral width (fs)
• Phonon Spectrum – thermal conductivity, nonratiative lifetime
• Growth technologies – size, cost
• Coating technologies – damage threshold
• Laser diode technology – reliability, power, new materials (1.9µm InGaAsSb/GaSb)
MIR high power (W-kW) laser options:
CO2 – 10µm
CO - 5µm
Er3+ - 3µm
Cr2+ – 2.2 -2.8 µm
Ho3+ - 2.1 µm
Tm3+ - 1.85µm – 2.1 µm
Beyond state of the art: New SSL materials
Main search strategy:
• Low phonon energy materials
• Enhanced transparency in MIR
Generic formula: Re3+:MePb2Hal5
Re=Pr, Nd, Er, Tb, Dy, Ho
Me=K,Rb
Hal=Cl, Br
Transparency regions:
KPb2Cl5 0.4 µm – 20 µm
KPb2Br5 0.4 µm – 30 µm
RbPb2Br5 0.37 µm – 30 µm
Nonlinear optical sources
Characteristics:
• Tunable – depends on nonlinear material
• No quantum defect – High peak and average power
• From CW to fs
• High efficiency
DFG
OPA
i   p  s
OPO
 p  s  i
Nonlinear optical materials for MIR, FIR
Required and Desirable properties:
• High transmission at pump wavelength around 1µm
• Absence of two-photon absorption at pump wavelength
• High transmission in MIR
• High nonlinearity
• High optical damage threshold
• Engineerability (QPM structuring or composition variation)
• Non-hygroscopic
• Feasibility of large-volume crystal growth
Main classes of MIR, FIR NLO materials:
• Oxides: KTiOPO4 (KTP), RbTiOPO4 (RTP), LiNbO3, LiTaO3...
Engineerable, can be pumped in NIR
MIR Transmission limited to ~4 µm, 80µm - 300µm
• Semiconductors: GaAs, GaP, ZnGeP2 (ZGP), AgGa1−x InxS2, ...
MIR tranmission to 20 µm, FIR 60µm – 300 µm
Absorbing at 1 µm
• Organic: 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium tosylate (DAST)
Very high nonlinearity 30xKTP, good MIR, FIR transmission
Very difficult to grow, Hygroscopic
Engineerable nonlinear optical materials
OP-GaAs (Stanford)
PP-KTP (KTH) period 800 nm, over 5 mm
[L.A.Eyres et al APL, 79, 904 (2001)]
[C. Canalias et al Nature Photonics,1, 459 (2001)]
State of the art: OPOs
High-energy ns tunable OPO
PP-RbTiOPO4
Signal / Idler wavelength (m)
3.4
35.4 m
3.2
36.0 m
3.0
36.4 m
2.8
2.6
37.4 m
2.4
38.2 m
2.2
37.8 m
2.0
1.8
1.6
20
40
60
80
100
120
140
160
180
Temperature (°C)
[A.Fragemann, Optics Lett., 83, 3092 (2003)]
State of the art: OPOs
Cascaded PPKTP – ZGP OPO for active countermeasures
[M.Henriksson, Appl. Phys.B, 88, 37 (2007)]
Beyond state of the art: OPO
Surgical ns OPO at 6.45 µm and 6.1 µm
Target: Peak power 0.5 MW, average power 1W
State of the art: OPAs
Optical parametric amplifiers for ultrashort pulses
OP-GaAs (Stanford)
PP-KTP OPA (KTH)
Power, log scale
0
-10
p=827nm, =28µm
-20
-30
1000
2000
3000
4000
Wavelength , nm
[M.Tiihonen, etal, Appl. Phys. B, 85, 73 (2006)]
FWHM  115 THz (~1 octave)
1.08 µm - 3.8 µm
[P.S.Kuo, etal, Optics Lett., 31, 71 (2006)]
Beyond state of the art: Near-field MIR-FIR
• MIR, FIR polariton optics in ferroelectrics
• Tailoring polaritonic FIR waves with photonic crystals
• Functionalized surfaces
• Sub-wavelength sensing
[K. A. Nelson etal Nature Materials, 1, 95 (2002)]
[J. Faist, etal Optics Express, 15, 4499 (2007)]