Spin and Magnetic Mon\ments

Download Report

Transcript Spin and Magnetic Mon\ments

Spin and Magnetic Moments (skip sect. 10-3) • Orbital and intrinsic (spin) angular momentum produce magnetic moments

• coupling between moments shift atomic energies · Look first at orbital (think of current in a loop)  

I

A

current

area

  2

qv

r q

2

m

 

r

2

L

 

l but

 

L g l

 

b

mvr

L

b

e

 2

m e

· the “g-factor” is 1 for orbital moments. The Bohr magneton is introduced as the natural unit and the “-” sign is due to the electron’s charge 

l L

2   

g l

b l

(

l

 1 ) 

l

(

l

 1 ) 

zl

 

g l

b m l

P460 - Spin 1

• • •

Spin

Particles have an intrinsic angular momentum - called spin though nothing is “spinning” probably a more fundamental quantity than mass integer spin  Bosons half-integer  Fermions Spin particle postulated particle 0 pion Higgs, selectron 1/2 electron photino (neutralino) 1 photon 3/2 D 2 graviton relativistic QM Klein-Gordon and Dirac equations for spin 0 and 1/2.

• Solve by substituting operators for E,p. The Dirac equation ends up with magnetic moment terms and an extra degree of freedom (the spin)

KG

:

E

2 

p

2 

m

2

D

:

E

p

2 

m

2 P460 - Spin 2

Spin 1/2 expectation values

• similar eigenvalues as orbital angular momentum (but SU(2)). No 3D “function” 

S i

,

S j

  

ijk

S k S

2  

s

(

s

 1 )  2 ,

S z

  |

s

| ...

|

s

|

for S

S

2  1 2 1 2  3 2  2  3 4  2 ,

S z

  1 2  , 1 2 

s

 

g s

b

S

g s

 2 .

00232

• Dirac equation gives g-factor of 2

 2 P460 - Spin 3

Spin 1/2 expectation values

• non-diagonal components (x,y) aren’t zero. Just indeterminate. Can sometimes use Pauli spin matrices to make calculations easier

S i

  2 

i

S

2  3  2 4

S z

  2 1 0 0  1

S x

  2 0 1 1 0 1 0 0 1

S y

  2 0

i

i

0 • with two eigenstates (eigenspinors)           1 0 0 1 

S z eigenv alue

  2 

S z eigenv alue

  2 P460 - Spin 4

Spin 1/2 expectation values

• “total” spin direction not aligned with any component. • can get angle of spin with a component cos  

S

S z

 1  2 3  4  1 3 P460 - Spin 5

Spin 1/2 expectation values

• Let’s assume state in an arbitrary combination of spin-up and spin down states.

 

a

   • expectation values. z-component

b

  

a b with

|

a

| 2  |

b

| 2  1

S z

  |

S z

|   

a

*

b

*   2   1 0  0 1    

a b

    2 (

a

2 

b

2 ) • x-component

S x

 

a

*

b

*    0  2  2 0    

a b

    2 (

a

*

b

b

*

a

) • y-component

S y

 

a

*

b

*    0  2

i

 0  2

i

   

a b

   

i

 2 (

a

*

b

b

*

a

) P460 - Spin 6

Spin 1/2 expectation values example

1 • assume wavefunction is   1 6

i

2 • expectation values. z-component

S z S z

  2    2 (

a

2

a

2  2 6 

b

2 ) 

S z

   3   2 

b

2  4 6 • x-component 

S x

 2  

t S x

 (

a

*

b

b

*

a

)   

a

*  2 1 6

b

*  0  2

a

 2  ( 1 

i

) 2  0

b

2 ( 1 

i

)    3 • Can also ask what is the probability to have different components. As normalized, by inspection

probabilit y

(

S x probabilit y

(

S x

   2 )   2  ) 5 6  1 6  ( 5 6  1 6 ) 1 2  1 3 • or could rotate wavefunction to basis where x is diagonal P460 - Spin 7

• Can also determine

S x

2

S y

2

S z

2

S x

2 • and widths   4 2 

a

*   4 2 

a

*   2 4 

a

* 

S

2

y

b

*

b

*

S z

2       0 1 0

i b

*    1 0 1 0     0 1  0

i

    0

i

1 0    

a b

    2 4  0

i

   

a b

   (

a

*

a

b

*

b

)   4 2 (

a

*

a

b

*

b

)  2 4   4 2  1 3 0  1     1 0

S

2 0  1    

a b

    2 4 (

a

*

a

b

*

b

)   2 4 ( ( D

S y

) 2  ( D

S

D

S x z

) ) 2 2  

S S z

2

x S y

2 2   

S S x S y z

2   2 ( 1  (

a

*

b

b

*

a

) 2 ) 4 2 2    4  2 4 2 ( 1  (

a

*

b

( 1  (

a

*

a

 

b

*

a

) 2 )

b

*

b

) 2 ) P460 - Spin 8

Widths- example

• Can look at the widths of spin terms if in a given eigenstate • z picked as diagonal and so    1 0

S z

2   2 4  1 ( D

S z

) 2 

S z

2 0    1 0 

S z

0  1     1 0 2   2 4 0  1     1 0 ( 1  1 )  0     2 4 • for off-diagonal

S x

  1 0  0  2  2 0 1 0  0

S

2

x

  2 4  1 ( D

S x

) 2 

S

2

x

0   0 1

S x

1 0 0 1 2   2 4 1 0 1 0   2 4 P460 - Spin 9

Components, directions, precession

• Assume in a given eigenstate    1 0 • the direction of the total spin can’t be in the same direction as the z component (also true for l>0)

S z

  2

S

S

2  3  2  cos   1 3 • Example: external magnetic field. Added energy D

E

  

s

 

B

z B

puts electron in the +state. There is now a torque    

s

 

B

 

g s

 

b

S

 

B

which causes a precession about the “z-axis” (defined by the magnetic field) with Larmor frequency of  

g s

 

b B

P460 - Spin 10

Precession - details

• Hamiltonian for an electron in a magnetic field

H

eg

4 

m

 

B

• assume solution of form       (

t

) (

t

) 

S H

   2 

i

d

dt

• If B direction defines z-axis have Scr.eq.

 

B

B

1 0 0  1

i

d dt

    

eg

B

4

m

• And can get eigenvalues and eigenfunctions 1 0 0  1         ( 0 )

egB

4

m

a b

 1 0  (

t

)     

egB

4

m ae

i

 

t be i

 

t

 0 1 P460 - Spin 11

Precession - details

• Assume at t=0 in the + eigenstate of S x  2 0 1 1 0   (

t

) 

a b

1 2  

a

2

b e

i

 

t e i

 

t

a b

 1 2 1 1 • Solve for the x and y expectation values. See how they precess around the z-axis

S x S y

   2

i

 2 (

a

*

b

(

b

*

a

 

b

*

a

)

a

*

b

)    2 (

e

2

i

 

t

 2 (

e

2

i

 

t

 2  2

e i

 2

i

 

t e

 2

i

 

t

) )    2  2 cos 2  

t

sin 2  

t

P460 - Spin 12

Arbitrary Angles

• can look at any direction (p 160 and problem 10-2 or see Griffiths problem 4.30) • Construct the matrix representing the component of spin angular momentum along an arbitrary radial direction r. Find the eigenvalues and eigenspinors.

r

ˆ  sin  cos 

i

ˆ  sin  sin  • Put components into Pauli spin matrices ˆ

j

 cos 

k

ˆ 

S r

    sin  cos  cos  

i

sin  sin  sin  cos  

i

sin  cos   sin     • and solve for its eigenvalues 

S r

    |

S

 

I

|  0     1 P460 - Spin 13

r

ˆ  sin  cos 

i

ˆ  sin  sin 

j

ˆ  cos 

k

ˆ 

S r

   • Go ahead and solve for eigenspinors  . cos  cos  

i

sin  sin  sin  cos  

i

sin  cos   sin    

S r a b

  

for

  1     

a b

  cos   

b

sin

a

( 1 sin   cos

e

 

i

  ) (cos  

a

 sin

i

 cos  sin 2 2 

e i

 ) 

a

(

use

1  cos sin   • Gives (phi phase is arbitrary)  tan  2 ) 

r

    cos

e i

 sin  2  2  

for

   1  

r

   

e

i

  sin cos  2  2   • if r in z,x,y directions

z

:   0       1 0   ,      0  1  

x

: 

y

:     2 ,   2 ,   0    2            1 2 1 2   ,   1  2

i

2   ,       1 2 1 2      

i

2 1 2   P460 - Spin 14

Combining Angular Momentum

• If have two or more angular momentum, the combination is also an eigenstate(s) of angular momentum. Group theory gives the rules: 

S i

,

S j

 

i

 

ijk S k

• representations of angular momentum have 2 quantum numbers:

l

m

0  , 1 2 , 1 , 

l

, 

l

3 2 ......

 1 ...

l

 1 ,

l

2

l

 1

states

• combining angular momentum A+B+C…gives new states G+H+I….each of which satisfies “2 quantum number and number of states” rules • trivial example. Let J= total angular momentum 

J if

 

L

L

  0 , 

S

S

 

L

1 2    

J

L i

 1 2 

S

, 

J z

  sin

glet

doublet

doublet

S i

 1 2 1  2  2 P460 - Spin 15

Combining Angular Momentum

• Non-trivial examples. add 2 spins. The z-components add “linearly” and the total adds “vectorally”. Really means add up z-component and then divide up states into SU(2) groups

J z if

 

S

1 1 2 1 2    1 2 1 2 1 2  ,  

S

2 1 0  1 2  1 2  0   1 2  1 2   1 1 2

with S z

1   1 2

S z

2   1 2

4 terms. need to split up. The two 0 mix

J

  

J

S

1   1 , 

S

2 

J z

  1 , 0 , 1

AND

J

 0 ,

J z

 0

doublet

2  2 

doublet

 3  1 

triplet

 sin

glet

P460 - Spin 16

Combining Angular Momentum

• add spin and orbital angular momentum

if J z

S

  1 1 2  3 2 , 1 2 , , 1 2 1 2

L

,   0 1 2 1  , 

with

1 2 

S z

1   1 2 1 2 ,  3 2  1 2

L z

 1 , 0 ,  1  

J

 3 2 , 

J z

  3 2 ,  1 2

AND

J

 1 2 ,

J z

  1 2

triplet

3   2

doublet

 4  2 

quartet

doublet

P460 - Spin 17

Combining Angular Momentum

• Get maximum J by maximum of L+S. Then all possible combinations of J (going down by 1) to get to minimum value |L-S|

• number of states when combined equals number in each state “times” each other • the final states will be combinations of initial states. The “coefficients” (how they are made from the initial states) can be fairly easily determined using group theory (step-down operaters). Called Clebsch-Gordon coefficients • these give the “dot product” or rotation between the total and the individual terms.

l l

m m

1 

m m m

1   

m

2

total total m

2   

l

  

m

 1   

m m

1

m

1

m

 2  

m

2

m

2

l

m

m

   

l m

  

l

    

m

 

m

 1

m m m

m

 2 P460 - Spin 18

Combining Angular Momentum

• Clebsch-Gordon coefficients • these give the “dot product” or rotation between the total and the individual terms. “easy” but need to remember what different quantum number labels refer to

l l

m m

1 

m m m

1  

total total

    

m

1

m

1 

m

2

m

2   

l m

 1 

m m

 2  

m

2

m

2

l

m

 1

m

 2   

l m

  

l

    

m

 1 

m

 1

m m m

 2

m

 2 P460 - Spin 19

Combining Angular Momentum

• example 2 spin 1/2 • have 4 states with eigenvalues 1,0,0,-1. Two 0 states mix to form eigenstates of S 2 

S z

 ,      ,    1   ,

S z

   0  

S z

    1   • step down from ++ state  

S z

   0  

S S z

C

  

S

1

z S

1   

S

2

z S

2    (

l

m

)(

l

m

 1 )

S

1 

S

2  

S

      

C

 ( 1 2 , 1 2 ) 

C

 ( 1 2 , 1 2 )       2  (  

S

l

 1 ,

m

 1            ) 

C

 ( 1 , 1 )

l

2  1 ,

m

 0  

l l

 1 ,

m

 0  0 ,

m

 0    2 

l

 1 ,

m

1 2 (   1 2 (       )   )

orthogonal

 0 • Clebsch-Gordon coefficients  1 2 P460 - Spin 20

• • • •

Combining Ang. Momentum

check that eigenstates have right eigenvalue for S 2 first write down 

S

  2  

S

1 2 

S

1 2 (   

S

S

S

2 2  2 2   

S

2 2 2 ) 2

S

1

S

1

z z

S

2

S

2 

S

1 2

z z

   

S

2 2 2

S

1

x S

1  

S

2

S

2  2 

S

1

x

   

S

2 2

S

1

y S

1 

S

2 

S

2

y

and then look at terms 

S

2 1

X

  1 2 (( 

S

2 1 

S

2 2

X

  3 4  2

X

 2

S

1

z S

2

z X

with and S

2  

S

1 

S

2        ) 2 (   2 )(

S

1    )  2 

X

   2     ( 

S

2 1

S

2    )  

S

2 

S

1   2 )   

S

1   3 4    2

X

  0

X

   0  (

S

2 

S

1  

S

1 

S

2  )

X

    2

X

S

 

S x

iS y

1 2 (      ) putting it all together see eigenstates 

S

2

X

   2 ( 3 4  3 4  1 2  1 )

X

   2 2 0

X

 P460 - Spin 21

• L=1 + S=1/2

2 terms

L z

 1 0  1  1 0  1

• Example of how states “add”:

j j m m

  3 2 1 2 1 2 1 2  

L z

1 3 1 2 3 1 

S z

1 2  1 2   2 3 1 3 0 0

S z

 1 2  1 2  1 2  1 2  1 2  1 2 1 2 1 2

J z

 3 2  1 2  1 2  1 2  1 2  3 2 

J

1 3 2 3 2 3 2 3 2 3 2 3 2 

J

2 • Note Clebsch-Gordon coefficients (used in PHYS 374 class for Mossbauer spectroscopy)  1 3 , 2 3 P460 - Spin 22 1 2 1 2 1 2 1 2

• Clebsch-Gordon coefficients for different J,L,S P460 - Spin 23