Folie 1 - CaspianWorld
Download
Report
Transcript Folie 1 - CaspianWorld
Availability of High-Tech Metals - New
Developments in Research, Exploration and
the Raw Materials Markets
5. Astana Mining and Metallurgy Congress
AMM, Astana,12.-13. June 2014
Volker Steinbach
Federal Institute for Geosciences and Natural Resources (BGR), Germany
Market penetration times on the US market
source: (Berner 2000)
Global Raw Materials Demand for Future Technologies
2006 and 2030
Relation between recent worldwide production and the demand for future technologies
Commodity
2006*
2030*
Future Technologies
Gallium
18%
397%
Photovoltaic, IC, WLED
Indium
40%
329%
Displays, Photovoltaic
Scandium
low
231%
SOFC Fuel Cells, Al-Alloys
Germanium
28%
220%
IR optical Technologies
Neodym
23%
166%
Permanent Magnets, Laser
Tantalum
40%
102%
Micro Capacitors, Medicine
Source: Fraunhofer-Institut für System- und Innovationsforschung, Institut für Zukunftsstudien und Technologiebewertung (2009)
* BGR counted by new data
Foto: DG-Solartechnik
Foto: Zeiss
Foto: Voith AG
Foto: PerkinElmer Optoelectronics
Global Raw Materials Demand for Future Technologies
2006 and 2030
Relation between recent worldwide production and the demand for future technologies
Commodity
2006*
2030*
Future Technologies
Gallium
18%
397%
Photovoltaic, IC, WLED
Indium
40%
329%
Displays, Photovoltaic
Scandium
low
231%
SOFC Fuel Cells, Al-Alloys
Germanium
28%
220%
IR optical Technologies
Neodym
23%
166%
Permanent Magnets, Laser
Tantalum
40%
102%
Micro Capacitors, Medicine
Source: Fraunhofer-Institut für System- und Innovationsforschung, Institut für Zukunftsstudien und Technologiebewertung (2009)
* BGR counted by new data
Foto: DG-Solartechnik
Foto: Zeiss
Foto: Voith AG
Foto: PerkinElmer Optoelectronics
Global Raw Materials Demand for Future Technologies
2006 and 2030
Relation between recent worldwide production and the demand for future technologies
Commodity
2006*
2030*
Future Technologies
Gallium
18%
397%
Photovoltaic, IC, WLED
Indium
40%
329%
Displays, Photovoltaic
Scandium
low
231%
SOFC Fuel Cells, Al-Alloys
Germanium
28%
220%
IR optical Technologies
Neodym
23%
166%
Permanent Magnets, Laser
Tantalum
40%
102%
Micro Capacitors, Medicine
Source: Fraunhofer-Institut für System- und Innovationsforschung, Institut für Zukunftsstudien und Technologiebewertung (2009)
* BGR counted by new data
Foto: DG-Solartechnik
Foto: Zeiss
Foto: Voith AG
Foto: PerkinElmer Optoelectronics
Global Raw Materials Demand for Future Technologies
2006 and 2030
Relation between recent worldwide production and the demand for future technologies
Commodity
2006*
2030*
Future Technologies
Gallium
18%
397%
Photovoltaic, IC, WLED
Indium
40%
329%
Displays, Photovoltaic
Scandium
low
231%
SOFC Fuel Cells, Al-Alloys
Germanium
28%
220%
IR optical Technologies
Neodym
23%
166%
Permanent Magnets, Laser
Tantalum
40%
102%
Micro Capacitors, Medicine
Source: Fraunhofer-Institut für System- und Innovationsforschung, Institut für Zukunftsstudien und Technologiebewertung (2009)
* BGR counted by new data
Foto: DG-Solartechnik
Foto: Zeiss
Foto: Voith AG
Foto: PerkinElmer Optoelectronics
Global Raw Materials Demand for Future Technologies
2006 and 2030
Relation between recent worldwide production and the demand for future technologies
Commodity
2006*
2030*
Future Technologies
Gallium
18%
397%
Photovoltaic, IC, WLED
Indium
40%
329%
Displays, Photovoltaic
Scandium
low
231%
SOFC Fuel Cells, Al-Alloys
Germanium
28%
220%
IR optical Technologies
Neodym
23%
166%
Permanent Magnets, Laser
Tantalum
40%
102%
Micro Capacitors, Medicine
Source: Fraunhofer-Institut für System- und Innovationsforschung, Institut für Zukunftsstudien und Technologiebewertung (2009)
* BGR counted by new data
Foto: DG-Solartechnik
Foto: Zeiss
Foto: Voith AG
Foto: PerkinElmer Optoelectronics
The Metal Wheel: after Reuter et al. and Verhoef et al.
Major metals
By products
With special
infrastructure
Al Mn
Zn
Cr Ti V
Cu
Mn
Cu As Ti Fe
Li
Mg Sn Mg
Cr Ni
As Pb
B Br
Ni
V Ga
Co Fe
Mn
Al Cu
oxide
Al
Ca/Si
Zn
Cl
Fe
Pb
Sn
Mg
V
Fe Al
Al Fe
Fe
Cr
Mn
Mg
Al
Nb
PGM
V
Zr Mg
Cr
Ti
Ta Mn
Ca/Si
Zn W
Ga
Sn Ag
Au Zn
In As Cu
Ge
Mn
Sb Bi
Ni Ag
In
Pb
Fe
Pb Nb
Cd
Cu Pt
Cu
Ag
Ta
Se
Cu
Au
Ir
Ag
Co
Mg
Zn
Ru
Te
Hg
Au Pb Mo
As
Sb Fe
Co Rh
Sb
Pd Os
Te
Bi
sulfide and
Os
Cr
Ru Pt
Hg
Ti
Ni
Rh
Se
As
As
oxide ore
sulfide
Ir Co Bi
Ca/Si
Ca/Si
ore
Fe
Sb
Ca/Si
Hg
Mg
Limited
infrastructure
No infrastructure
→ tailings
ore
Germanium: Global demand for high-tech applications in
2030 compared to the production in 2006
Fiber optic cables, IR optical technologies
Production 2006 - 2010: 100 - 120 t
Demand 2030 : ca. 300 t
(72 + 220 t)
Development of production until 2030
Active and planned mine capacities
ca. 300 t / year
Other sources / technologies:
Recycling potential
Improved recovery technologies
ca. 40 - 80 t / year
Situation alarming
High country concentration, country risk (China)
Production:
By-product from Zn-Cu-ores (USA, China) and coal (China, Russia)
Foto: Zeiss
German-info.com
“Big Hill“ of Lubumbashi, DRC: a possible source of
germanium
Potential > 2,250 t Ge
~ 20 years of world supply !
STL plant (since 2000)
55 % OM Group (U.S. - Finland)
25 % Groupe Forrest (Congo D.R.)
20 % Gécamines (Congo D.R.)
Production: 4,000 t Co, 2,500 t Cu,
15,000 t Zn
a few tons of Ge p.a. (?)
15 Mt slags from 80 years of production
(Kipushi Ge-rich Zn-Cu ore plus stratiform
Cu-Co ores)
Core: 0.4 % Co, 12.5 % Zn, 1.3 % Cu,
250 ppm Ge
Margin: 1.2 % Co, 12 % Zn, 2 % Cu,
100 ppm Ge
The Eastern Asian Germanium-rich Coal Province
4000 t
30-50 g/t
2600 t
300 g/t
1665 t
700 g/t
1015 t
450 g/t
1600 t
270 g/t
880 t
1043 g/t
Position of the largest Ge–coal
deposits of the World.
1 — Novikovsk
2 — Bikinsk
3 — Pavlovsk
4 — Shkotovsk
5 — Lincang
6 — Wulantuga
7 — Wumuchang
(Seredin & Finkelman, 2008, Int J Coal Geol)
13,000 t Ge reserves in 7 coal fields
1060 t
850 ppm
Germanium: Recycling
• Little recycling from postconsumer scrap
• 25-35% of total Ge used from recycled scrap
German-info.com
• Infrared optics: 30% production from recycled
material
• Fibre optics: 60% recycled material; recovery from fibres 80%; 0.3-1 g
GeO2 per km cable
• Electronics, solar: 50% waste accumulation, recycled
• Polymerization catalysts: 10-70 ppm in PET bottles, no recycling of Ge
possible
Kazakh-German Raw Materials Partnership
• MoU on cooperation in the fields of geology and mining
• BGR / DERA commissioned for its implementation - primary task:
re-evaluation of mine projects in Kazakhstan (2012-2013)
• Agreement for the disclosure of "analytical" data (information on
occurrences and mineral deposits in Kazakhstan)
• Survey of selected projects and verification through on site inspection
• Presentation of the results to the German and Khazakh industry at an
industry workshop in Hannover in December 2013
Methodological approach
Vanadium project
(South Kazakhstan)
Final product: Investor's Handbook
Project factsheets (15 projects)
Review of data by the Technical Working Group (40)
Pre-assessment (deposit quality, reported metal contents
and grades, further technical parameters)
Screening of 318 projects; pre-selection of 80 projects
BGR Project: Re-evaluation of mine projects in Kazakhstan
Information
sources
Nmber of
projects
Tauken Samruk
Private
companies
Geological
Committee
Total
318 mineral
deposits, waste
dumps and tailings
projects considered
Sn, Ta
REE, Mo, U
Ga, V
REE
59
Cu, Sb, Ag
8
W
251
In, W
318
U
Ta, U, REE
PGM
Ga, In, Ge, Co
*IM = industrial Minerals
Ni = primary commodity
W = possible by-products
Ga, In, Ge, Co
Mo, PGM, Te,
Rh, Se, Ni. Fe
PGM, Cu, Co
Rh
Zn, Pb, Au, W
Key aspect
Ta
Nb
Availability and new potentials for mineral resources
Sb
REE
Y
Ge
In
Development of a new research topic at BGR:
Ni
World-wide raw material potentials for metals of strategic
PGE
economic importance to secure a future supply to the German industry
Co
► Characterisation of complex non-conventional deposit types for an
identification of new potentials for high-tech metal supply
(process-oriented research, trace metal distribution, exploration indicators)
► Potential for high-tech metals in mine residues
► New technologies for extraction of trace metals (e.g., using bio-leaching)
Securing the supply of raw materials in the EU –
current initiatives
Hochtechnologie-Elemente
in MMR
Deep-ocean
mineral deposits as source of high-tech
metals
4000 – 6000 m
► Ferromanganese nodules
(Co, Li, Nd, Ga, Ce, Tb, Dy, Mo)
Ferromanganese crusts
1000 – 2500 m
(c) NOAA
(Co, Te, Se, Pt, Tb, Dy)
(c) Marum
► Marine sulfides
(Ag, Au, In, Ga, Ge, Se, Te, Sb)
1800 – 3000 m
Indium enrichment in marine sulfides
Material efficiency of Critical Raw Materials
Development of nonconventional deposit
types for high-tech
metals
Natural
resources
(ores,
concentrates)
Enhanced recovery
of by-product metals from
ore (e.g., indium from zinc
ore)
Source: Modified from Faulstich (2010)
Making recycling of metals
of strategic economic
importance more efficient
Conclusion, High-Tech Metals
Foto: DG-Solartechnik
•
•
•
•
•
•
•
Foto: Voith AG
Foto:
PerkinElmer Optoelectronics
Germany is dependent on the world markets
According to the geology: no shortages for high-tech metals
Shortages caused by the marked situation
country concentration, geostrategic risks, conflict minerals
High-tech metals are mostly by-products (co-elements);
their production depends on the production of major elements (like Pb, Zn, Cu)
Technical realisation of the production of co-elements by metallurgical
treatment (e.g. Ge from coal ash) is needed
Development of non-conventional deposit types (marine mineral resources,
oxydized ores)
Low recycling rates