Transcript Slide 1
13 The Costs of Production PRINCIPLES OF ECONOMICS FOURTH EDITION N. G R E G O R Y M A N K I W PowerPoint® Slides by Ron Cronovich © 2007 Thomson South-Western, all rights reserved ACTIVE LEARNING Brainstorming 1: You run General Motors. List 3 different costs you have. List 3 different business decisions that are affected by your costs. 1 In this chapter, look for the answers to these questions: What is a production function? What is marginal product? How are they related? What are the various costs, and how are they related to each other and to output? How are costs different in the short run vs. the long run? What are “economies of scale”? CHAPTER 13 THE COSTS OF PRODUCTION 2 Total Revenue, Total Cost, Profit We assume that the firm’s goal is to maximize profit. Profit = Total revenue – Total cost the amount a firm receives from the sale of its output CHAPTER 13 THE COSTS OF PRODUCTION the market value of the inputs a firm uses in production 3 Costs: Explicit vs. Implicit Explicit costs – require an outlay of money, e.g. paying wages to workers Implicit costs – do not require a cash outlay, e.g. the opportunity cost of the owner’s time Remember one of the Ten Principles: The cost of something is what you give up to get it. This is true whether the costs are implicit or explicit. Both matter for firms’ decisions. CHAPTER 13 THE COSTS OF PRODUCTION 4 Explicit vs. Implicit Costs: An Example You need $100,000 to start your business. The interest rate is 5%. Case 1: borrow $100,000 • explicit cost = $5000 interest on loan Case 2: use $40,000 of your savings, borrow the other $60,000 • explicit cost = $3000 (5%) interest on the loan • implicit cost = $2000 (5%) foregone interest you could have earned on your $40,000. In both cases, total (exp + imp) costs are $5000. CHAPTER 13 THE COSTS OF PRODUCTION 5 Economic Profit vs. Accounting Profit Accounting profit = total revenue minus total explicit costs Economic profit = total revenue minus total costs (including explicit and implicit costs) Accounting profit ignores implicit costs, so it’s higher than economic profit. CHAPTER 13 THE COSTS OF PRODUCTION 6 Economic Profit versus Accounting Profit When total revenue exceeds both explicit and implicit costs, the firm earns economic profit. Economic profit is smaller than accounting profit. • Economic profit • Super Normal Profit • Monopoly Profit • Producer Surplus Normal Profit is when total revenue just equals explicit and implicit cost. (Break even) CHAPTER 13 THE COSTS OF PRODUCTION 7 Figure 1 Economic versus Accountants How an Economist Views a Firm How an Accountant Views a Firm Economic profit Accounting profit Revenue Implicit costs Revenue Total opportunity costs Explicit costs CHAPTER 13 Explicit costs 8 THE COSTS OF PRODUCTION Copyright © 2004 South-Western 2: Economic profit vs. accounting profit ACTIVE LEARNING The equilibrium rent on office space has just increased by $500/month. Compare the effects on accounting profit and economic profit if a. you rent your office space b. you own your office space 9 ACTIVE LEARNING Answers 2: The rent on office space increases $500/month. a. You rent your office space. Explicit costs increase $500/month. Accounting profit & economic profit each fall $500/month. b.You own your office space. Explicit costs do not change, so accounting profit does not change. Implicit costs increase $500/month (opp. cost of using your space instead of renting it), so economic profit falls by $500/month. 10 The Production Function A production function shows the relationship between the quantity of inputs used to produce a good, and the quantity of output of that good. It can be represented by a table, equation, or graph. Example 1: • Farmer Jack grows wheat. • He has 5 acres of land. • He can hire as many workers as he wants. CHAPTER 13 THE COSTS OF PRODUCTION 11 Example 1: Farmer Jack’s Production Function Q (no. of (bushels workers) of wheat) 3,000 Quantity of output L 2,500 0 0 1 1000 2 1800 3 2400 500 4 2800 0 5 2,000 1,500 1,000 3000 CHAPTER 13 THE COSTS OF PRODUCTION 0 1 2 3 4 5 No. of workers 12 Formulas Total Product = total Output Average Product = Total Output/ Total Input Marginal Product = /\ total Output/ /\ total Input /\ = change in CHAPTER 13 THE COSTS OF PRODUCTION 13 Average product The average product is the output per worker. The average product will tend to rise initially in the short run with increasing returns to the variable factor, but will eventually begin to fall when diminishing returns set in. The marginal product curve will intersect the average product curve at its peak. CHAPTER 13 THE COSTS OF PRODUCTION 14 Marginal product: The addition to output made by each extra worker Total product: Total output. CHAPTER 13 THE COSTS OF PRODUCTION 15 Marginal Product The marginal product of any input is the increase in output arising from an additional unit of that input, holding all other inputs constant. E.g., if Farmer Jack hires one more worker, his output rises by the marginal product of labor. Notation: ∆ (delta) = “change in…” Examples: ∆Q = change in output, ∆L = change in labor ∆Q Marginal product of labor (MPL) = ∆L CHAPTER 13 THE COSTS OF PRODUCTION 16 EXAMPLE 1: Total & Marginal Product L Q (no. of (bushels workers) of wheat) ∆L = 1 0 1 ∆L = 1 ∆L = 1 ∆L = 1 ∆L = 1 CHAPTER 13 2 3 4 5 0 MPL ∆Q = 1000 1000 ∆Q = 800 800 ∆Q = 600 600 ∆Q = 400 400 ∆Q = 200 200 1000 1800 2400 2800 3000 THE COSTS OF PRODUCTION 17 EXAMPLE 1: MPL = Slope of Prod Function Q (no. of (bushels MPL workers) of wheat) 0 0 1000 1 1000 800 2 1800 600 3 4 5 2400 2800 3000 CHAPTER 13 400 200 MPL 3,000 Quantity of output L equals the slope of the 2,500 production function. 2,000 Notice that MPL diminishes 1,500 as L increases. 1,000 This explains why 500 production the function gets flatter 0 as L0 increases. 1 2 3 4 THE COSTS OF PRODUCTION 5 No. of workers 18 Why MPL Is Important Recall one of the Ten Principles: Rational people think at the margin. When Farmer Jack hires an extra worker, • his costs rise by the wage he pays the worker • his output rises by MPL Comparing them helps Jack decide whether he would benefit from hiring the worker. CHAPTER 13 THE COSTS OF PRODUCTION 19 Why MPL Diminishes Diminishing marginal product: the marginal product of an input declines as the quantity of the input increases (other things equal) E.g., Farmer Jack’s output rises by a smaller and smaller amount for each additional worker. Why? If Jack increases workers but not land, the average worker has less land to work with, so will be less productive. In general, MPL diminishes as L rises whether the fixed input is land or capital (equipment, machines, etc.). CHAPTER 13 THE COSTS OF PRODUCTION 20 Diminishing returns When the addition of a variable factor of production results in a fall in marginal product. Diminishing returns refers to a situation where a firm is trying to expand by using more of its variable factors, but finds that the extra output they get each time they add one gets progressively less and less. This usually arises because their capacity is limited in the short-run and the combination of the fixed and variable factors becomes less than optimal. Diminishing returns is the main reason why the short-run supply curve is upward sloping. CHAPTER 13 THE COSTS OF PRODUCTION 21 EXAMPLE 1: Farmer Jack’s Costs Farmer Jack must pay $1000 per month for the land, regardless of how much wheat he grows. The market wage for a farm worker is $2000 per month. So Farmer Jack’s costs are related to how much wheat he produces…. CHAPTER 13 THE COSTS OF PRODUCTION 22 EXAMPLE 1: Farmer Jack’s Costs L Q (no. of (bushels workers) of wheat) cost of land cost of labor Total Cost 0 0 $1,000 $0 $1,000 1 1000 $1,000 $2,000 $3,000 2 1800 $1,000 $4,000 $5,000 3 2400 $1,000 $6,000 $7,000 4 2800 $1,000 $8,000 $9,000 5 3000 $1,000 $10,000 $11,000 CHAPTER 13 THE COSTS OF PRODUCTION 23 Fixed and Variable Costs Fixed costs (FC) – do not vary with the quantity of output produced. • For Farmer Jack, FC = $1000 for his land • Other examples: cost of equipment, loan payments, rent Variable costs (VC) – vary with the quantity produced. • For Farmer Jack, VC = wages he pays workers • Other example: cost of materials Total cost (TC) = FC + VC CHAPTER 13 THE COSTS OF PRODUCTION 24 Short run VS Long run The short run is that period of time in which at least one factor of production is fixed. All production takes place in the short run. The long run is that period of time in which all factors of production are variable, but the state of technology is fixed. All planning takes place in the long run. CHAPTER 13 THE COSTS OF PRODUCTION 25 EXAMPLE 2 Our second example is more general, applies to any type of firm, producing any good with any types of inputs. CHAPTER 13 THE COSTS OF PRODUCTION 26 EXAMPLE 2: Costs FC VC TC 0 $100 $0 $100 1 100 70 170 2 100 120 220 3 100 160 260 4 100 210 310 5 100 280 380 FC $700 VC TC $600 $500 Costs Q $800 $400 $300 $200 $100 6 7 100 380 100 520 480 620 $0 0 1 2 3 4 5 6 7 Q CHAPTER 13 THE COSTS OF PRODUCTION 27 EXAMPLE 1: Farmer Jack’s Total Cost Curve Q (bushels of wheat) $12,000 Total Cost $1,000 1000 $3,000 1800 $5,000 2400 $7,000 2800 $9,000 3000 $11,000 CHAPTER 13 Total cost 0 $10,000 $8,000 $6,000 $4,000 $2,000 $0 0 THE COSTS OF PRODUCTION 1000 2000 3000 Quantity of wheat 28 Marginal costs The amount spent on producing one extra unit. The marginal cost is the increase in total cost when one more unit is produced. CHAPTER 13 THE COSTS OF PRODUCTION 29 Marginal Cost Marginal Cost (MC) is the increase in Total Cost from producing one more unit: ∆TC MC = ∆Q CHAPTER 13 THE COSTS OF PRODUCTION 30 EXAMPLE 1: Total and Marginal Cost Q (bushels of wheat) 0 Total Cost $1,000 ∆Q = 1000 1000 $3,000 ∆Q = 800 ∆Q = 600 ∆Q = 400 ∆Q = 200 CHAPTER 13 1800 Marginal Cost (MC) $5,000 2400 $7,000 2800 $9,000 3000 $11,000 ∆TC = $2000 $2.00 ∆TC = $2000 $2.50 ∆TC = $2000 $3.33 ∆TC = $2000 $5.00 ∆TC = $2000 $10.00 THE COSTS OF PRODUCTION 31 EXAMPLE 1: The Marginal Cost Curve $12 0 TC MC $1,000 $2.00 1000 $3,000 $2.50 1800 $5,000 $3.33 2400 $7,000 $10 Marginal Cost ($) Q (bushels of wheat) $8 MC usually rises as Q rises, as in this example. $6 $4 $2 $5.00 2800 $9,000 3000 $11,000 CHAPTER 13 $10.00 $0 0 THE COSTS OF PRODUCTION 1,000 2,000 3,000 Q 32 Why MC Is Important Farmer Jack is rational and wants to maximize his profit. To increase profit, should he produce more wheat, or less? To find the answer, Farmer Jack needs to “think at the margin.” If the cost of additional wheat (MC) is less than the revenue he would get from selling it, then Jack’s profits rise if he produces more. (In the next chapter, we will learn more about how firms choose Q to maximize their profits.) CHAPTER 13 THE COSTS OF PRODUCTION 33 EXAMPLE 2: Marginal Cost TC MC 0 $100 1 2 3 4 5 6 7 170 220 260 310 380 480 620 CHAPTER 13 $70 50 40 50 70 100 140 $200 Marginal Cost (MC) Recall, is $175 the change in total cost from producing one more unit: $150 ∆TC MC = ∆Q $100 Usually, MC rises as Q rises, due $75 to diminishing marginal product. Costs Q $125 $50 Sometimes (as here), MC falls $25 before rising. $0 (In other0 examples, 1 2 3 MC 4 may 5 6be 7 constant.) Q THE COSTS OF PRODUCTION 34 Average fixed cost Total fixed cost divided by output. The average fixed cost will decline as output increases. This is because as output increases the fixed costs are spread further and further. CHAPTER 13 THE COSTS OF PRODUCTION 35 EXAMPLE 2: Average Fixed Cost FC 0 $100 1 2 100 100 AFC n.a. $100 50 3 100 33.33 4 100 25 5 100 20 6 100 16.67 7 100 14.29 CHAPTER 13 $200 Average fixed cost (AFC) is$175 fixed cost divided by the quantity of output: $150 Costs Q AFC $125 = FC/Q $100 Notice $75 that AFC falls as Q rises: The firm is spreading its fixed $50 costs over a larger and larger $25 number of units. $0 0 1 THE COSTS OF PRODUCTION 2 3 4 Q 5 6 7 36 Average variable cost The average variable cost is the total variable cost divided by output. The average variable cost curve will generally be u-shaped because of the presence of increasing returns initially in the short run reducing average variable costs initially. Eventually, however, diminishing returns will set in and the average variable cost will start to rise. CHAPTER 13 THE COSTS OF PRODUCTION 37 EXAMPLE 2: Average Variable Cost VC AVC 0 $0 n.a. 1 70 $70 2 120 60 3 160 53.33 4 210 52.50 5 280 56.00 6 380 63.33 7 520 74.29 CHAPTER 13 $200 Average variable cost (AVC) is$175 variable cost divided by the quantity of output: $150 Costs Q AVC $125 = VC/Q $100 As$75 Q rises, AVC may fall initially. In most cases, AVC will $50 eventually rise as output rises. $25 $0 0 1 THE COSTS OF PRODUCTION 2 3 4 Q 5 6 7 38 Average total costs The amount spent on producing each unit of output. The average total cost is calculated by dividing the total level of cost by the level of output. The average total cost will be made up of two elements; the average fixed and average variable cost. The average total cost curve will tend to be u-shaped due to the presence of increasing and then diminishing returns. CHAPTER 13 THE COSTS OF PRODUCTION 39 EXAMPLE 2: Average Total Cost Q TC 0 $100 ATC AFC AVC n.a. n.a. n.a. 1 170 $170 $100 $70 2 220 110 50 60 3 260 86.67 33.33 53.33 4 310 77.50 25 52.50 5 380 76 20 56.00 6 480 80 16.67 63.33 7 620 88.57 14.29 74.29 CHAPTER 13 THE COSTS OF PRODUCTION Average total cost (ATC) equals total cost divided by the quantity of output: ATC = TC/Q Also, ATC = AFC + AVC 40 EXAMPLE 2: Average Total Cost TC 0 $100 1 2 170 220 ATC $200 Usually, as in this example, $175 the ATC curve is U-shaped. n.a. $150 $170 110 Costs Q $125 $100 3 260 86.67 4 310 77.50 5 380 76 $25 6 480 80 $0 7 620 88.57 $75 $50 0 1 2 3 4 5 6 7 Q CHAPTER 13 THE COSTS OF PRODUCTION 41 EXAMPLE 2: The Various Cost Curves Together $200 $175 ATC AVC AFC MC Costs $150 $125 $100 $75 $50 $25 $0 0 1 2 3 4 5 6 7 Q CHAPTER 13 THE COSTS OF PRODUCTION 43 ACTIVE LEARNING Costs 3: Fill in the blank spaces of this table. Q VC 0 1 10 2 30 TC AFC AVC ATC $50 n.a. n.a. n.a. $10 $60.00 80 3 16.67 4 100 5 150 6 210 150 20 12.50 36.67 8.33 $10 30 37.50 30 260 MC 35 43.33 60 44 ACTIVE LEARNING Answers 3: AFC FC/Q Use ATC = TC/Q MC and First,relationship AVC deduce VC/Q FCbetween = $50 and use FCTC + VC = TC. Q VC TC AFC AVC ATC 0 $0 $50 n.a. n.a. n.a. 1 10 60 $50.00 $10 $60.00 2 30 80 25.00 15 40.00 3 60 110 16.67 20 36.67 4 100 150 12.50 25 37.50 5 150 200 10.00 30 40.00 6 210 260 8.33 35 43.33 MC $10 20 30 40 50 60 45 EXAMPLE 2: Why ATC Is Usually U-Shaped As Q rises: $200 Initially, falling AFC pulls ATC down. $175 Costs Eventually, rising AVC pulls ATC up. $150 $125 $100 $75 $50 $25 $0 0 1 2 3 4 5 6 7 Q CHAPTER 13 THE COSTS OF PRODUCTION 46 EXAMPLE 2: ATC and MC When MC < ATC, ATC is falling. $175 $150 ATC is rising. $125 Costs When MC > ATC, The MC curve crosses the ATC curve at the ATC curve’s minimum. ATC MC $200 $100 $75 $50 $25 $0 0 1 2 3 4 5 6 7 Q CHAPTER 13 THE COSTS OF PRODUCTION 47 Efficient Scale The bottom of the U-shaped ATC curve occurs at the quantity that minimizes average total cost. This quantity is sometimes called the efficient scale of the firm. efficient scale , MC = ATC Efficient scale is the quantity that minimizes average total cost. CHAPTER 13 THE COSTS OF PRODUCTION 48 Cost Curves and Their Shapes Average Marginal Rule Relationship between Marginal Cost and Average Total Cost • Whenever marginal cost is less than average total cost, average total cost is falling. • Whenever marginal cost is greater than average total cost, average total cost is rising. • Thus, MC will always intersect the ATC at its minimum. CHAPTER 13 THE COSTS OF PRODUCTION 49 Costs in the Short Run & Long Run Short run: Some inputs are fixed (e.g., factories, land). The costs of these inputs are FC. Long run: All inputs are variable (e.g., firms can build more factories, or sell existing ones) In the long run, ATC at any Q is cost per unit using the most efficient mix of inputs for that Q (e.g., the factory size with the lowest ATC). CHAPTER 13 THE COSTS OF PRODUCTION 50 EXAMPLE 3: LRATC with 3 factory Sizes Firm can choose from 3 factory sizes: S, M, L. Avg Total Cost Each size has its own SRATC curve. The firm can change to a different factory size in the long run, but not in the short run. CHAPTER 13 THE COSTS OF PRODUCTION ATCS ATCM ATCL Q 51 EXAMPLE 3: LRATC with 3 factory Sizes To produce less than QA, firm will choose size S in the long run. Avg Total Cost To produce between QA and QB, firm will choose size M in the long run. To produce more than QB, firm will choose size L in the long run. CHAPTER 13 THE COSTS OF PRODUCTION ATCS ATCM ATCL LRATC QA QB Q 52 A Typical LRATC Curve In the real world, factories come in many sizes, each with its own SRATC curve. ATC LRATC So a typical LRATC curve looks like this: Q CHAPTER 13 THE COSTS OF PRODUCTION 53 How ATC Changes As the Scale of Production Changes Economies of scale: ATC falls as Q increases. ATC LRATC Constant returns to scale: ATC stays the same as Q increases. Diseconomies of scale: ATC rises as Q increases. CHAPTER 13 THE COSTS OF PRODUCTION Q 54 Long Run Average Cost Curve Brief description: The long run average cost curve shows the least-cost method of production of any given level of output. It is often drawn U-shaped (though in practice will vary) to show that initially there may be economies of scale which reduce the cost per unit. Subsequently there may be constant returns to scale where the cost per unit remains the same and eventually the cost per unit may begin to rise as diseconomies of scale set in. CHAPTER 13 THE COSTS OF PRODUCTION 55 Long Run Average Cost Curve CHAPTER 13 THE COSTS OF PRODUCTION 56 Economies of scale EOS are any decrease in long-run average costs that come about when a firm alters all of its factors of production in order to increase its scale of output. Ex: • Specialization • Division of labor • Bulk buying • Financial economies • Transportation economies • Large machines • Promotional economies CHAPTER 13 THE COSTS OF PRODUCTION 57 Diseconomies of scale DOS are any increase in long-run average costs that comes about when a firm alters all of its factors of production in order to increase its scale of output. • Control and communication problems • Alienation and loss of identity CHAPTER 13 THE COSTS OF PRODUCTION 58 Long Run Average Total Cost (LRATC) ATC of producing a given level of output when all input can vary. LRATC curve is constructed as the least cost of all possible short run cost curves. (NOTE) No AFC in the long-run. In the long run all inputs are variable, so no fixed costs. LRATC is equal to long run AVC (since all costs are variable). CHAPTER 13 THE COSTS OF PRODUCTION 59 How ATC Changes As the Scale of Production Changes Economies of scale occur when increasing production allows greater specialization: workers more efficient when focusing on a narrow task. • More common when Q is low. Diseconomies of scale are due to coordination problems in large organizations. E.g., management becomes stretched, can’t control costs. • More common when Q is high. CHAPTER 13 THE COSTS OF PRODUCTION 60 CONCLUSION Costs are critically important to many business decisions, including production, pricing, and hiring. This chapter has introduced the various cost concepts. The following chapters will show how firms use these concepts to maximize profits in various market structures. CHAPTER 13 THE COSTS OF PRODUCTION 61 CHAPTER SUMMARY Implicit costs do not involve a cash outlay, yet are just as important as explicit costs to firms’ decisions. Accounting profit is revenue minus explicit costs. Economic profit is revenue minus total (explicit + implicit) costs. The production function shows the relationship between output and inputs. CHAPTER 13 THE COSTS OF PRODUCTION 62 CHAPTER SUMMARY The marginal product of labor is the increase in output from a one-unit increase in labor, holding other inputs constant. The marginal products of other inputs are defined similarly. Marginal product usually diminishes as the input increases. Thus, as output rises, the production function becomes flatter, and the total cost curve becomes steeper. Variable costs vary with output; fixed costs do not. CHAPTER 13 THE COSTS OF PRODUCTION 63 CHAPTER SUMMARY Marginal cost is the increase in total cost from an extra unit of production. The MC curve is usually upward-sloping. Average variable cost is variable cost divided by output. Average fixed cost is fixed cost divided by output. AFC always falls as output increases. Average total cost (sometimes called “cost per unit”) is total cost divided by the quantity of output. The ATC curve is usually U-shaped. CHAPTER 13 THE COSTS OF PRODUCTION 64 CHAPTER SUMMARY The MC curve intersects the ATC curve at minimum average total cost. When MC < ATC, ATC falls as Q rises. When MC > ATC, ATC rises as Q rises. In the long run, all costs are variable. Economies of scale: ATC falls as Q rises. Diseconomies of scale: ATC rises as Q rises. Constant returns to scale: ATC remains constant as Q rises. CHAPTER 13 THE COSTS OF PRODUCTION 65