Transcript Slide 1
Energy Systems Analysis Group Activities Bob Williams CMI Annual Meeting Princeton University 9 February 2010 Toward Decarbonization of Coal Power • US coal power accounts for: – ½ of electricity – ⅓ of CO2 emissions from fossil fuel burning • Decarbonizing existing coal plant sites warrants priority under serious C-mitigation policy • Options considered: – CCS retrofit for pulverized coal plant (PC-CCS retrofit) – Four repowering options • Definitions: – Retrofit: retain plant but add equipment to “scrub” CO2 from flue gases – Repower: bulldoze site and rebuild there—but retain all infrastructure…or rebuild elsewhere if site unsuitable Carbon Mitigation Options Examined Written-off PC-V plant 543 MWe, 33.6% efficient CCS retrofit Post-combustion capture (amine scrubber) Repowering options NGCC-V Natural gas combined cycle that vents CO2 NGCC-CCS NGCC with post combustion capture CIGCC-CCS Coal integrated gasifier combined cycle with pre-combustion capture CBTLE-CCS Coal/biomass to liquids + electricity with precombustion capture Repowering via Coal/Biomass Coproduction of Liquid Fuels + Electricity with CCS (CBTLE-CCS) • Outputs: Fischer-Tropsch liquid fuels (~ 2/3 energy out = synthetic diesel/gasoline) + electricity (~ 1/3 energy out from combined cycle) • ~ ½ feedstock C captured as CO2, stored in geological media • GHG emission rate declines as biomass % of energy input increases • Configuration considered: • 7,800 B/D of FTL + 264 MWe (net) • Biomass @ 1 x 106 dt/y = 38% of input (energy basis, HHV) • 2.1 x 106 t CO2 stored annually • GHG emissions are ~ 90% < for conventional energy displaced (existing coal power + equivalent crude oil-derived products) • GHG Emission Rates for Alternative Power Systems 1000 kg CO2eq per MWh e 900 800 700 600 500 400 300 200 100 0 Existing plant CCS retrofit NGCC-V repowering NGCC-CCS repowering CIGCC-CCS repowering CBTLE-CCS repoweriing GHG Emissions Avoided for Alternative C-Mitigation Strategies for Existing Coal Plant Sites 1600 kg CO2eq per MWh 1400 1200 1000 Via displacing crude oil-derived products 800 Via displacing existing coal power 600 400 200 0 CCS retrofit NGCC-V repowering NGCC-CCS repowering CIGCC-CCS repowering CBTLE-CCS repoweriing CO2 Storage Rate for Systems with CCS kg CO2 per MWh 1200 900 600 300 0 CCS retrofit of existing subcritical PC Repowering with NGCC-CCS Repowerinng with CIGCC-CCS Repowering with CBTLE-CCS Energy Penalty for CCS (relative to same system with CO2 vented) 40 Percent 30 20 10 0 CCS retrofit of existing subcritical PC Repowering with NGCC-CCS Repowerinng with CIGCC-CCS Repowering with CBTLE-CCS Consumptive Water Requirements, Gallons per MWhe of Electricity Output 1000 900 Gallons per MWh e 800 700 600 500 400 300 200 100 0 Existing subcritical PV-C CCS reetrofit of existing subcritical PC New NGCC-V New NGCC-CCS New CIGCC-V New CIGCC-CCS New CBTLE-CCS Consumptive Water Requirements, Gallons per MWhth of Fuel Input Gallons per MWh th 250 200 150 100 50 0 Existing subcritical PV-C CCS reetrofit of existing subcritical PC New NGCC-V New NGCC-CCS New CIGCC-V New CIGCC-CCS New CBTLE-CCS Capital Cost for Alternative C-Mitigation Strategies for Existing Coal Plant Sites 1600 Million Dollars 1400 1200 1000 Makeup via NGCC-CCS 800 Retrofit or Repowering 600 400 200 0 CCS retrofit NGCC-V repowering NGCC-CCS repowering CIGCC-CCS repowering CBTLE-CCS repoweriing LEVELIZED ELECTRICITY GENERATION COST vs GHG EMISSIONS PRICE Generation Cost, $ per MWh e 140 120 Written-off PC-V plant PC-CCS retrofit CIGCC-CCS NGCC-V NGCC-CCS CBTLE-CCS, $50/barrel crude CBTLE-CCS, $75/barrel crude CBTLE-CCS, $100/barrel crude 100 80 60 40 20 0 0 10 20 30 40 50 60 70 80 90 100 GHG emissions price, $ per tonne of CO2eq THOUGHT EXPERIMENT: DECARBONIZE 90% OF EXISTING COAL POWER, 2020-2050 (9.4 GWe/y) Key Attributes of Alternative Energy Futures for US Coal Power in Carbon-Constrained World 3.0 2.5 2.0 Total CO2 stored in 2050, Gt CO2 Total GHG emissions avoided in 2050, Gt CO2eq 1.5 0.1 x (Total US coal use, EJ/y) 1.0 0.5 0.0 US coal use 2007, EJ/10 US coal use 2050 via retrofits. EJ/10 US coal use 2050 via repowering, EJ/10 GHG emissions avoided 2050 via retrofits, Gt CO2eq GHG CCS via CCS via emissions retrofits 2050, repowering avoided 2050 Gt CO2 2050, Gt CO2 via repowering, Gt CO2eq • CBTLE-CCS coproduct: 3.9 million barrels/day of low-C synfuels • 0.5 Gt biomass needed annually by 2050 for repowering option • NG generation up 2 X, 2020-2050 (assumed make-up power:NGCC-CCS) FUTURE WORK • Potentially abundant, ubiquitous shale gas at reasonable cost extend coproduction idea CBTLE-CCS GBTLE-CCS • Extend analysis to China—exploring prospects for both as alternatives to continued building of PC-V plants ESAG TEAM AND MAIN COLLABORATORS, 2009-2010 • Core Group: – – – – – Robert Williams Eric Larson Tom Kreutz LIU Guangjian ZHENG Zhong • China Collaborators – – – – LI Zheng (Tsinghua) CHEN Haiping (NCEPU) GUO Xianbo (SINOPEC) ZHOU Zhe (Tsinghua) • Politecnico di Milano collaborators: – Stefano Consonni – Emanuele Martelli – Giulia Fiorese • ECN, The Netherlands – Michiel Carbo