Transcript Lab Tutor
Decentralized Control Applied to Multi-DOF Tuned-Mass Damper Design Lei Zuo and Samir Nayfeh • Decentralized H2 Control • Decentralized H Control • Decentralized Pole Shifting • Decentralized H2 with Regional Pole Placement Control View of SDOF TMD k2 c2 u Spring: feedback relative displacement with gain k2 Damper: feedback relative velocity with gain c2 u = k2(x2 - x1)+c2(x2 x1 ) x1 x St at e: x 2 x1 x 2 SDOF TMD MDOF TMD: ---- To make use of other degree of freedoms ---- Better vibration suppression ---- To damp multiple modes with one mass damper Formulation for MDOF TMD Systems Disturbance x Ax B1w B2u Cost Output Measurement z C1 x D11 w D12 u y C2 x D21 w D22 u k1 u c1 0 k2 c2 y F y d ... ... 0 The mass-spring-damper systems can be cast as a Decentralized Static Output Feedback problem decentralized control for different disturbances and performance requirements # Performance Disturbance Approach 1 Decentralized H2/LQ r.m.s. response (impulse energy) white noise gradient-based 2 Decentralized H peak in frequency worst-case domain sinusoid LMI iteration/ gradient-based 3 Pole shifting modal damping unknown -subgradient 4 Decentralized H2 + pole constraint r.m.s. response +transient char. partially-known Methods of white noise multipliers 2DOF TMD for Single Mode Vibration 2.12 c1 2d k2 mass ratio md /ms=5% c2 2.08 2.06 2.04 2.02 k1 c2 k1 c2 2.1 Minimal ||H||2 k1 Minimal ||H||2 of x0xs versus /d 2 0 0.5 1 1.5 Radius of gyration / location (/d) /d=: traditional SDOF TMD /d=1: two separate SDOF TMDs /d=1/ 3: 2DOF TMDs (uniform) /d=0.780: 2DOF TMDs (optimal) 2 2DOF TMD: Decentralized H 7 /d= mass ratio md /ms=5% /d=1 /d=1/sqrt(3) Magnitude xs /x0 Magnitude xs( j) / x0( j) 6 5 /d=0.751 4 3 k1 c1 2 k2 2d c2 1 0 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 Normalized Frequency Normalized frequency ( / s ) 2DOF TMD can be better than the traditional SDOF TMD and two separate TMDs 2DOF TMD: Negative Damping mass ratio md /ms=5%, /d=0.2 Much better performance if one of the damper can be negative. A new reaction mass actuator Application: Beam Splitter of Lithography Machine beam splitter (mockup) flexures table (Acknowledgement: Thanks to Justin Verdirame for making this mockup) 6DOF TMD for 6DOF Beam Splitter mass damper excitation accelerometer spring-dashpot connections Measured T.F. of 6DOF TMD Frequency Response 0 -20 -40 -60 50 100 150 200 100 150 200 250 300 350 400 450 250 300 Frequency (Hz) 350 400 450 0 Phase (deg) Phase (deg) Original System With One 6MDOF TMD 20 Magnitude (dB) Magnitude(dB) 40 -90 -180 -270 50 SIX modes are damped well just by using ONE secondary mass Decentralized Pole Shifting 2DOF TMD for a free-free beam, 72.7" long Objective: To maximize the minimal damping of some modes Method: nonsmooth, Minimax (subgradient + eigenvalue sensitivity) plunger cup blade adjustable screw Experiment: 2DOF TMD for a free-free beam Vibration Isolation/Suspension • Passive Vehicle Suspension: Decentralized H2 optimization • 6DOF Active Isolation: Modal Control (collaborated with MIT/Catech LIGO) • Dynamic Sliding Control for Active Isolation (with Prof Slotine) Passive Vehicle Suspension Sliding Control for Frequency-Domain Performance In mode space: Coupling due to non-proportional damping xi 2ii ( xi x0i ) i2 ( xi x0i ) ui f d (t ) r ( xr x0r ) Control force r i Disturbance force • Conventional Sliding Surface i ( xi x0i ) xi xi i 0 x0 s • Frequency-Shaped Sliding Surface i Li (s)(xi x0i ) xi b1s b0 xi b1s b0 i ( xi x0i ) xi 0 2 s a0 x0i s (a0 b1 ) s b0 We can design Li(s) to meet the frequency performance requirement Physical Interpretation of the Frequency-Shaped Sliding Surface 1 10 a0=2(0.12)0.7 b0=(0.12)2 Take b1=0, on the sliding surface xi b0 2 x0i s a0 s b0 xi a0 s b0 2 x0i s a0 s b0 Skyhook ! (dB) Magnitude Magnitude (dB) For another case 0 10 -1 10 sky -2 10 -3 10 -4 10 -2 10 -1 10 0 10 Frequency Frequency (Hz) (Hz) 1 10 Case Study: 2DOF Isolation M1=500 kg, I1=250 kg m2, l1=1.0m, l2=1.4 m, Magnitude (dB) l1 l2 1=5.42 Hz, 1=1.01% 2=9.56 Hz, 2=1.41% x1/x0 x2/x0 target Simulation Results Ground x0=0.01sin(1.232t) meter -4 6 x 10 output (m) ( 1.23Hz: one natural freq of the 2nd stage ) X1 (m) 4 1 2 x 0.015 6.610-5 m red--without control blue--with control 0 0.01 -2 output (m) 6 2 4 6 8 10 12 14 16 18 20 0.005 X1 (m) output (m) X2 (m) 4 2 0 0 x 1 2 x 0 -4 x 10 -2 0 2 4 6 8 10 12 14 16 18 20 -4 ideal output (m) Ideal Output (m) 6 x 10 4 -0.01 Ideal output of “skyhook” system 2 0 -2 -0.005 -0.015 0 2 4 6 8 10 time (sec) 12 14 16 18 20 0 2 4 6 8 10 time (sec) 12 14 16 18 20