Transcript Document
SIONDICA project review on 20.6.07 V. Shklover - About coatings for ADC - General remarks (useful for our project) - Reminiscence of ICMCTF2007 - Papers on Si-O-N system - Patent search results - Conclusions Requirements to ADC materials B. Andresen, 2005 - Fracture toughness (repeated contraction and expansion, leading to heat checking) Die lifetime can be enhanced by ~ 50% by decreasing gradient between Tmax and Tmin (role of TC!) - Gross cracking resistance - Soldering resistance. Al alloys casting by Fe of die material at high-temperature. Intermetallics FeAlx have lower TC, Al melt cools at lower rate and separates from the rest of casting. Soldering occurs at hot spots on the die surface Tribology study of coatings for ADC O. Salas et al. 2003 Functions of ADC coating system: - Adhesion to substrate - Accommodation of stress - Good tribological properties - Corrosion resistance - Non-wettability with molten Al as central issue Best coatings (out of 15 studied) are TiAlN, TiN/TiCN/ CrN Coatings for ADC A. Lakare et al. 1999 Main failure modes in ADC: - Soldering (corrosion, formation of Fe-Al-Si intermetallics due to reaction H13 steel + Al as a result of H13 dissolving in Al) - Washout (erosion wear by high-velocity of cast metal of 30-100 m/sec, injective pressure 50-80 MPa) - Thermal fatigue (heat checks, due to alternative temperature change, 670-710 oC) CrN was best coating PVD coatings for ADC E. Bernacchi et al., 1996 TiAlN is more suitable for Al die casting then CrN and CrC (resistance to wear and Al soldering were checked) Soldering prevention by oxide surface treatment M. Z. Jahedi et al. 2001 - Production of compact oxide layer by oxidation in CO2/H2 gas mixture: Steel H13, 550 oC compact Fe3O4 layer Incoloy MA956 (4.5wt% Al), 1100 oC compact -Al2O3 layer - Prevention of formation of intermetallic Al/steel phases during Al pressure die casting (soldering) Design of coating systems for ADC S. Carrera et al. 2001 No one individual coating provides combination of properties: - Be non-wetting with liquid Al - Wear resistant - Oxidation resistant at casting conditions - Accommodate residual thermal stresses during shot cycling Working layer (non-wetting, wear- and oxidation resistance) Multilayer or graded layer (FGM) to minimize stresses Adhesion layer (~50 nm) with H13 Design of coating systems for ADC S. Carrera et al. 2001 - Composition of “working layer” depends on Al alloy - Candidates for “working layer” (poor wettability with Al): CrC, CrN, TiAlN, MoZrN, TiBCN, NoAl, TiCN - Coatings exhibit different wettability with different Al alloys - No best candidate was identified, though all were less wetting than H13 Corrosion of H13 steel in molten Al alloys R. Aharonov et al. 2001 - CrN provides good protection against molten Al - Smoother surface finish and thicker coatings result in better corrosion resistance - Optimum coating thickness is 4-5 µm - Substrate (H13) corrodes due to presence of pinholes and other defects - Thermal stresses around asperities also lead to corrosion - Coatings with higher compressive stress fail faster then low-stress coatings General: possible relation lattice parameters - hardness Sirdeshmukh et al. 2006 - Chemical bonding is important for determination of the crystal hardness, assuming definition of hardness as resistance to dislocations movement - For NaCl structures, lattice constant can be used as parameter, characterizing hardness: the weaker is the bond, the larger is bond length and the lower is hardness ln(Hvx100) Gilman-Chin parameter (Hv/C44) Hv, kg/mm2 a, Å ln(C44x100) Nanoindentation at elevated temperature - Micro Materials (UK), test measurements in LOT-Oriel GmbH - Standard NanoTest hot stage (heated indenter) to 500 oC - Hot stage operates to 750 oC - Two samples, measurements at RT, 500, 600, 700 and 750 oC Samples: - CrSiON #1771 (best CrSiON sample) on WCo substrate - CrN on WCo substrate (reference) Results expected: - End of June/beginning July General: texture formation in CrSiON films Typical for CrN films (200)-texture changes to (111) at increase of Si content in Cr1-xSixN (Martinez et al. 2004) Switch of texture and phase transformation (Lee et al. 2005) Solubility limit of Si in CrN (~11at.%, Kim et al. 2006) Understanding texture formation in CrSiON films F. H. Baumann et al. Monte Carlo modeling of thin-film growth is planned Al film Competition of (001) and (111) growth three different temperatures General: Lab of Crystallography of ETH is buying instrument for TC measurements until 2000 oC Ultrathin SiON films K. Muraoka et al. 2003 - Growth by by SiH4/N2/O2 plasma-enhanced CVD process at Si(111) substrate temperature of 500 oC - Compositions on the line SiO2…Si3N4 considered - N and O content studied by angle-resolved XPS (N1s and O1s bands) Compositions of (Si3N4)x(SiO2)1-x films deposited at 500 oC and annealed at 850 oC Thermodynamics of Si-O-N system M. L. Green et al. 2001 Thermodynamic (bulk) phase diagram for Si-O-N system Why N atoms incorporate into SiO2? M. Hillert et al. 1992 - N can be trapped kinetically - N can be thermodynamically stable at the interfaces - (There are also other explanations) Calculated SiO2 - Si3N4 phase diagram Nitridation of SiO2 D. Fischer et al, 2004 - Hydrogen passivation as a way to stabilization of SiON in SiOxNy-z(NH)z structure - MD simulation of effect of nitridation on SiO2 - Up to nitrogen content of ~25%, basic structure of oxide is preserved - Beyond critical N content, structural transitions are expected - Upper limit of N content may be different for bulk and films Properties of superhard Si-O-N system L. Torrison et al. 2003 - Si2N2O has superior oxidation resistance and thermal shock resistance compared to Si3N4. But no suitable synthesis technique at relative low temperatures for Si2N2O is available - Si2N2O has structure of high-pressure B2O3 - Characterization: RBS (with simulation), SIMS, HRTEM, FTIR - Structure of non-stoichiometric SiNxOy: predominantly Si3N4 network with some lattice sites occupied by O - Tuning of composition by growth parameters ICMCTF 2007: contributions related to our project AP-3 Hsu et al. Erosion wear and corrosion behavior of CrN-O double layer coatings CrN/Cr2O3 has highest hardness and lowest friction AP-6 Tien et al. Effect of nitrogen flow on quaternary Cr-Al-Si-N coatings at elevated temperature Oxygen content, hardness (30.4 GPa), oxidation resistance as a function of nitrogen amount BP-12 Chang et al. HT oxidation resistance of Cr-Al-Si-N Improvement of oxidation resistance when going from Cr-N to Cr-Al-Si-N EP-1 Hong et al. Effect of Cr-Zr-N thin film on low-speed torque efficiency Zr content modifies surface morphology if coating compared to CrN, TiN, CrSiN GP-3 Lee et al. Microstructure and tribology of Cr-Zr-N films Improvement of Cr-Zr-N coatings compared to Cr-N, depending on Zr content ICMCTF 2007 (A1-2-11) DSC/TGA study of oxidation of CrN and CrAlN coatings on sacrificial supports J. Lin et al. 2007 Reactive sputtering onto stainless steel and glass covered with formvar (deposition temperature 150-250 oC) - Different phase transitions correlated with XRD - DSC, TGA and Kissinger plots for Cr0.78Al0.22N - Reactions are more pronounced with increasing heating rates - Reactions are shifted to higher temperatures with Cr content Patent search Software: Derwent Innovation Index (ISI Web of Knowledge) Patent Downloader (US, Japan, PCT) Search for: “ZrSiON” “ZrAlON” “TiAlON” “AlCrON” “Aluminium die casting coatings” “Oxynitride” “Coatings AND “die” “Chromium” AND “Silicon” AND “Oxynitride” “Chromium” AND “Silicon” AND “Nitride” ZrSiON US2006159933-A1 ZrSiOxNy/SiNx/NbZrOx/SiNx/glass, multilayer1) US2006121290-A1 Si3N4/ZrSiOxNy/NiCrOx/Ag/ZnOx/glass1) JP2004074361-A SixMyN, SixMyC, SixMyCN, SixMyNO (M=Ti, Al, Cr, Zr, V, Hf, Nb, Mo, W) hard coatings2) EP742182-A1 Oxides of Zr, Y, Mg in Si3N4 matrix, cutting tools3) JP6015502-A Si3N4/ZrO2/ZnN /MgSiZrON, cutting tools3) JP5305721-A SiON, SiZrON, SiAlON, SiZrAlON, thermal head4) JP63095161-A Si3N4/ZrO2/Al,Y-oxide mixture, tool material2) JP60021887-A Al/Zr/Hf-oxides or oxinitrides, cutting tools5) EP117936-A Si3N4/Mg/Sr/RE/ZrO2 sintered workpiece6) JP90016271 Si3N4 + Al, Si, Y, Zr-oxides, oxinitrides7) 1)Guardian, 2)Sumimoto, 3)Mitsubishi, 4)Toshiba,5)Nippon Tungsten, 6)NGK Insulators, 7)Asahi Glass. No evidences for Al die casting, diffusion barriers, TC ZrAlON JP2005279917-A WC/TiN/-(AlxZrx)2O3, double layer, cutting tool1) JP2004322251-A AlTiZrO…TiAlYZrN, graded, multilayer, cutting tool2) DE4432182-A1 Si3N4/MSiON (M=Al, Zr, Li, P or Mg), low-TC3) JP4114955-A Al2O3/[MN(MC, MON) M=Ti, Zr, Hf, Y, Mg, Ca]1) EP271237-A AlN/AlON/(MN, M=Ti, Zr or Hf), composite4) JP62288162-A (Zr or Hf-oxide)/(Al2O3 or AlON)/(CrN/SiN) composite5) JP60021887-A (M-oxide or MON, M=Al, Zr, or Hf)/Si3N4 , cutting tool6) JP2004174615-A AlZr(ONC), alternating multilayers1) 1)Mitsubishi, 2)Shinko Kobelko, 3)Isuzu Motors, 4)Minnesota Mining, 5)Toshiba, 6)Nippon Tungsten. No evidences for to Al die casting, diffusion barriers, one TC TiAlON JP2006315164-A TiCON/-Al2O3/, cutting tool, preferred orientation1) JP2006289586-A TiCON/(Al1-xCrx)2O3, cutting tool, preferred orientation1) JP2006181706-A TiaSibNc/(Al,Ti,M)N or (CON)/(ON), cutting tool2) JP2006043853-A TiCON/Al2O3 importance of -Al2O3 inclination angle1) EP1566463-A1 Al,Cr,Ti,Y/(NO), anti-wear coating3) JP2005205547-A -Al2O3/(TiN or TiCON), bilayer1) CN1587435-A TiAlON (18-36,17-32,4-24,27-41%), H=32 GPa4) JP2004344990-A AlO/TiN multilayer, alternating high Al/high Ti content5) JP2004322251-A AlTiZrO/TiAlN multilayers, cutting tool5) JP2004218049-A TiAlNO, hard coating5) 1)Mitsubishi, 2)Sumimoto, 3)Juergen Bach, 4)Shanghai Tool, 5)Shinko Kobelko. One really TiAlON, no evidences for Al die casting, diffusion barriers, TC AlCrON JP2004344991-A AlO/CrN multilayer, alternating high Al and Cr content1) 1)Shinko Kobelko, No evidences for to Al die casting, diffusion barriers, one TC Coatings for Al die casting (1) US2005263261-A1 MN coating wit graded Al concentration1) WO2004059030-A2 AlxCry(ON)z2) US2002108679-A1 -TiAl(+Y)3) EP1226030-A Doped CrN4) WO200115837-A (Ni-Be) alloy (1-3%Be)5) JP11151563-A Nb2O5 + (heat resistant Ni- or Co-alloy)6) JP7204822-A TiAlN/(TiN or Ti)/Base7) JP7204782-A Electroless Ni-coated layer8) JP6100981-A (Cu,Al,Cr,Fe material)+ (Al2O3 coatings)9) JP177328-A TiN, TiC, TiCN9) JP4100667 Nb, Mo, or W coatings6) 1)Colorado school mines, 2)Unaxis, 3)Authors, 4)Ionbond, 5)Brush Wellman, 6)Daido Tokushuko, 7)Ube Ind, 8)Matsumoto, 9)Nippon steel. Coatings for Al die casting (2) JP2225033-A (Fe,Cr-steel+Al2O3 particles+Cr2O3) anti-sticking in Al1) JP1118355-A ZrO2 or YSZ coatings2) DE3609051-A Cr,Fe,C-alloy coating (10-20% Cr, 2-4% C)3) JP60221542-A Al,Mo,Ni-base alloy (4-10% Al, 13-23% Mo)4) JP59202136-A SiO2, Al2O3, SiN coatings (+adhesive layer)5) GB2100636-A Thermally insulating metal oxide µm-particles layer6) JP7704586-B2 W- or Mo-oxides + graphite particles7) 1)Nippon Steel, 2)Aisin Seiki, 3)Volvo AB, 4)Hitachi Metals, 5)Toyota, 6)Swiss Aluminium, 7)Mallory & Co. Oxynitrides-1 KR2006089253-A Fabricating refractory materials with AlON1) JP2006315164-A TiCON/-Al2O3/, cutting tool, preferred orientation2) JP2006334720-A TiN(TiNO)/Cr2O3+SiN(solid solution)/-Al2O33) US2006240971-A1 SiAlON (two phases ’ + ’ + REM), ceramic body4) DE102005047449-A AlON,TiBN, TiAlN, VN, ZrN etc., PVD coatings5) WO2006097833-A1 ROxNy, e.g. TaON, TaZrO3N, H=25-30 GPa6) WO2006097410-A1 -MSi12-(m+n)Al(m+n)OnN16-n (M =Ca, Ba, .., REM)7) JP2006175596-A AlON+MON (M = Zr, Ti, …)8) JP2005271133-A Cubic (TixAly, TixSiy, or TixAlySiz)NO9) WO2006084404-A1 4-Layer coating, outer layer: AlCrNO, AlCrBN etc10) 1)Kigam, 2)Mitsubishi (many similar patents), 3)Toshiba, 4)Kennametal (many), 5)Winkhlover, 6)ELEMENT SIX (high R coordination number), 7)DIAMORPH CERAMIC, 8)Hitachi, 9)Sumimoto, 10)Unaxis, 11)KYOCERA No evidences for Al die casting, diffusion barriers, TC Oxynitrides-2 CN1587435-A TiAlON (18-36,17-32,4-24,27-41%), H=32 GPa1) US2006154108-A1 MNO (M = Al, Si, TiAlSi, AlCrVSi)2) CN1583547-A VCrON nano-powders, CVD-prepared3) JP2005125411 Ti(N, O, CO..)/(Cr1-xAlx)2O3, cutting tool4) WO2005016847-A1 /-SiAlON/(material B)5) JP2004345000-A TiYON, gradients of Y,O and Ti,N concentrations6) JP2004344999-A TiYON, alternating Y,O and Ti,N gradients6) JP2004344991-A AlCrON, gradients of Al,O and Cr,N concentrations6) JP2004344990-A AlCrON, alternating Al,O and Cr,N gradients6) JP2004345006-A TiAlSiON, alternating, continuous Al, Ti change7) JP2006150583-A TiON, (111)-deposited, (with 0.1-1% inert-gas)11) 1)Shanghai Tool, 2)Sumimoto, 3)Uni Donghua, 4)Mitsubishi, 5)Seramtec, 6)Shinko Kobelko, 7)Shinko Kobelko+Mitsubishi. No evidences for Al die casting, diffusion barriers, TC “Coatings” AND “die”-1 EP1688513-A1 (Al1-aVa)(C1-xNx). Excellent hardness and lubricity1) US6929851-B1 Hard particles in binder. Adhesion, wear resistance2) WO2004059030-A2 (AlyCr1-y)X, X=N, NO, …3) JP9209121-A Amorphous TiN, C-ions implanting4) JP9078227-A (TiX)/(TixAlyY), X=C, N, or CN, Y=C, N, or CN5) US5616372-A Diamond coating on hard substrate6) JP6306645-A TiN multilayers, TiCxNy coatings, wear and toughness7) EP543444-A Coating: hard corrosion and erosion resistant material8) SU1708941-A1 Aluminizing steel dies and moulds8) JP4224104-A TixAl1-xCryN1-y, x=0.5-0.9, y=0.1-0.59) 1)Kobe Seiko Sho. 2)TDY Ind. 3)Unaxis. 4)Sumimoto Electric. 5)Toshiba Tung. 6)Syndia. 7)Sumimoto Metal. 8)Zaporo Ind. 9)Nippon Steel. “Coatings” AND “die”-2 EP310043-A2 (Si3N4 or SiC)/(AlN or AlON)/(Al- or Zr-oxide)1) US4804642-A Ceramic mixture (AlBO)+MN (C), M=Al,Ti,Zr,Hf,Si,B2) JP1014185-A Hard-C coating3) EP289173-A1 Alternating TiN- and Ti-layers, wear resistant4) EP275978-A2 Al-, Zr-, Y-oxide particles in continuous oxide layers1) GB2100636-A Thermally insulating µm-sized metal oxide layer5) JP77045286-B2 W- or Mo-oxide films. MoNiFe/(WO3+graphite) for ADC6) US3674572-A Nitrided Ta, Nb and V alloys, with Ti- and Zr-additions7) DE2149914-A WC and MoC coatings8) JP3107462-A SiC/TiN/TiC or Si3N4/TiN (C) on Ni-based alloy9) 1)GTE Lab Inc. 2)Aluminium Co. America. 3)Idemitsu Petrochem. 4)British Petr. 5)Swiss Aluminium. 6)Mallory & Co. 7)Surface technology. 8)Fulmer Res. Inst. 9)Seiko Instr. Different JP2004306166-A (AlTiSiO, high Al,O)/(TiAlYSiN, high Ti,N) multilayer1) WO2006005217-A2 AlxCrySizBv(NO)w, cutting tool2) EP 1 413 648 A1 TiN, TiC, TiBN, TiCN, ZrC, multilayers EP 1 382 709 A1 TiSiN, TiSiCN, TiSiCNO, CrN, TiCrN, CrCN, CrCNO, multilayers 1)Shinko Kobelko, 2)Unaxis. Chromium AND silicon AND oxynitride (48, 8 relevant) JP2006334720-A CrON intermediate layer, oxide outer layer, Ti innen1) JP2006181706-A Multilayer TiSiN, AlNTiM (M=Cr, V, Y, Zr, Mo), TiSiCN layers2) JP2005271190-A MCON, M=Al, Si, or IVA, Va, VIA groups3) JP2004269985-A Oxynitrides of La, Cr, Al, B, Si, Ti4) JP2004074361-A Oxynitrides of MSi, M=Ti, Al, Cr, Zr, V, Hf, Nb, Mo2) JP2004066361-A Oxynitrides of MSi, M=Ti, Al, Cr, Zr, V, Hf, Nb, Mo2) JP2059472-A Cr,Si-oxides + Cr,Si-nitroxydes5) JP56038446-A Composites SiN, AlON (with Cu, Co, Ni, Cr)6) 1)Toshiba Tungaloy, 2)Subimoto Denko, 3)Sumimoto Electric, 4)Mitsubishi, 5)NGK SPARK PLUG Co., 6)Kuratomi. No ADC, TC, DB. “Chromium” AND “Silicon” AND “Nitride” (a lot) JP2005187859-A 1)Ion CrSiN columnar/CrSiN composite, … multilayer1) Kogaku Kenkyusho, Conclusions - Three-layer system can be beneficial: (1) Working layer (non-wetting, wear- and oxidation resistance) (2) Multilayer or graded layer to minimize stresses (3) Adhesion layer with H13 - Working layer composition - Smoother surface finish and thicker coatings result in better corrosion resistance. Importance of wettability studies - ZrSiON: no patents for ADC - CrSiON: no patents for ADC - AlCrON: no patents for ADC - ZrAlON: no patents for ADC - TiAlON: one patent for ADC, no patents for DB, TC