Transcript Document

SIONDICA project review on 20.6.07
V. Shklover
- About coatings for ADC
- General remarks (useful for our project)
- Reminiscence of ICMCTF2007
- Papers on Si-O-N system
- Patent search results
- Conclusions
Requirements to ADC materials
B. Andresen, 2005
- Fracture toughness (repeated contraction and expansion,
leading to heat checking)
Die lifetime can be
enhanced by ~ 50% by
decreasing gradient
between Tmax and Tmin
(role of TC!)
- Gross cracking resistance
- Soldering resistance. Al alloys casting by Fe of die material at
high-temperature. Intermetallics FeAlx have lower TC, Al melt
cools at lower rate and separates from the rest of casting.
Soldering occurs at hot spots on the die surface
Tribology study of coatings for ADC
O. Salas et al. 2003
Functions of ADC coating system:
- Adhesion to substrate
- Accommodation of stress
- Good tribological properties
- Corrosion resistance
- Non-wettability with molten Al as central issue
Best coatings (out of 15 studied) are
TiAlN, TiN/TiCN/ CrN
Coatings for ADC
A. Lakare et al. 1999
Main failure modes in ADC:
- Soldering (corrosion, formation of Fe-Al-Si intermetallics due
to reaction H13 steel + Al as a result of H13 dissolving in Al)
- Washout (erosion wear by high-velocity of cast metal of
30-100 m/sec, injective pressure 50-80 MPa)
- Thermal fatigue (heat checks, due to alternative
temperature change, 670-710 oC)
CrN was best coating
PVD coatings for ADC
E. Bernacchi et al., 1996
TiAlN is more suitable for Al die casting then CrN and CrC
(resistance to wear and Al soldering were checked)
Soldering prevention by oxide surface treatment
M. Z. Jahedi et al. 2001
- Production of compact oxide layer by oxidation in
CO2/H2 gas mixture:
Steel H13, 550 oC
compact Fe3O4 layer
Incoloy MA956 (4.5wt% Al), 1100 oC
compact -Al2O3 layer
- Prevention of formation of intermetallic Al/steel phases during
Al pressure die casting (soldering)
Design of coating systems for ADC
S. Carrera et al. 2001
No one individual coating provides combination of properties:
- Be non-wetting with liquid Al
- Wear resistant
- Oxidation resistant at casting conditions
- Accommodate residual thermal stresses during shot cycling
Working layer (non-wetting, wear- and oxidation resistance)
Multilayer or graded layer (FGM) to minimize stresses
Adhesion layer (~50 nm) with H13
Design of coating systems for ADC
S. Carrera et al. 2001
- Composition of “working layer” depends on Al alloy
- Candidates for “working layer” (poor wettability with Al):
CrC, CrN, TiAlN, MoZrN, TiBCN, NoAl, TiCN
- Coatings exhibit different wettability with different Al alloys
- No best candidate was identified, though all were less wetting
than H13
Corrosion of H13 steel in molten Al alloys
R. Aharonov et al. 2001
- CrN provides good protection against molten Al
- Smoother surface finish and thicker coatings result in
better corrosion resistance
- Optimum coating thickness is 4-5 µm
- Substrate (H13) corrodes due to
presence of pinholes and
other defects
- Thermal stresses around
asperities also lead to corrosion
- Coatings with higher compressive
stress fail faster then low-stress
coatings
General: possible relation lattice parameters - hardness
Sirdeshmukh et al. 2006
- Chemical bonding is important for determination of the crystal
hardness, assuming definition of hardness as resistance to
dislocations movement
- For NaCl structures, lattice constant can be used as parameter,
characterizing hardness: the weaker is the bond, the larger is
bond length and the lower is hardness
ln(Hvx100)
Gilman-Chin
parameter
(Hv/C44)
Hv, kg/mm2
a, Å
ln(C44x100)
Nanoindentation at elevated temperature
- Micro Materials (UK), test measurements in LOT-Oriel GmbH
- Standard NanoTest hot stage (heated indenter) to 500 oC
- Hot stage operates to 750 oC
- Two samples, measurements at RT, 500, 600, 700 and 750 oC
Samples:
- CrSiON #1771 (best CrSiON sample) on WCo substrate
- CrN on WCo substrate (reference)
Results expected:
- End of June/beginning July
General: texture formation in CrSiON films
Typical for CrN films (200)-texture changes to (111) at
increase of Si content in Cr1-xSixN (Martinez et al. 2004)
Switch of
texture and
phase
transformation
(Lee et al.
2005)
Solubility limit
of Si in CrN
(~11at.%,
Kim et al. 2006)
Understanding texture formation in CrSiON films
F. H. Baumann et al.
Monte Carlo modeling of thin-film growth is planned
Al film
Competition
of (001) and
(111) growth
three
different
temperatures
General: Lab of Crystallography of ETH is buying
instrument for TC measurements until
2000 oC
Ultrathin SiON films
K. Muraoka et al. 2003
- Growth by by SiH4/N2/O2 plasma-enhanced CVD process
at Si(111) substrate temperature of 500 oC
- Compositions on the line SiO2…Si3N4 considered
- N and O content studied by angle-resolved XPS
(N1s and O1s bands)
Compositions of (Si3N4)x(SiO2)1-x
films deposited at 500 oC and
annealed at 850 oC
Thermodynamics of Si-O-N system
M. L. Green et al. 2001
Thermodynamic
(bulk) phase
diagram for
Si-O-N system
Why N atoms incorporate into SiO2?
M. Hillert et al. 1992
- N can be trapped kinetically
- N can be thermodynamically stable at
the interfaces
- (There are also other explanations)
Calculated
SiO2 - Si3N4
phase diagram
Nitridation of SiO2
D. Fischer et al, 2004
- Hydrogen passivation as a way to stabilization of
SiON in SiOxNy-z(NH)z structure
- MD simulation of effect of nitridation on SiO2
- Up to nitrogen content of ~25%, basic structure of oxide is
preserved
- Beyond critical N content, structural transitions are expected
- Upper limit of N content may be different for bulk and films
Properties of superhard Si-O-N system
L. Torrison et al. 2003
- Si2N2O has superior oxidation resistance and thermal shock
resistance compared to Si3N4. But no suitable synthesis
technique at relative low temperatures for Si2N2O is available
- Si2N2O has structure of high-pressure B2O3
- Characterization: RBS (with simulation), SIMS, HRTEM, FTIR
- Structure of non-stoichiometric SiNxOy: predominantly Si3N4
network with some lattice sites occupied by O
- Tuning of composition by growth parameters
ICMCTF 2007: contributions related to our project
AP-3
Hsu
et al.
Erosion wear and
corrosion behavior of CrN-O double layer coatings
CrN/Cr2O3 has highest hardness
and lowest friction
AP-6
Tien
et al.
Effect of nitrogen flow on
quaternary Cr-Al-Si-N
coatings at elevated
temperature
Oxygen content, hardness
(30.4 GPa), oxidation resistance
as a function of nitrogen amount
BP-12 Chang
et al.
HT oxidation resistance of
Cr-Al-Si-N
Improvement of oxidation
resistance when going from
Cr-N to Cr-Al-Si-N
EP-1
Hong
et al.
Effect of Cr-Zr-N thin film
on low-speed torque
efficiency
Zr content modifies surface
morphology if coating compared
to CrN, TiN, CrSiN
GP-3
Lee
et al.
Microstructure and
tribology of Cr-Zr-N films
Improvement of Cr-Zr-N
coatings compared to Cr-N,
depending on Zr content
ICMCTF 2007 (A1-2-11) DSC/TGA study of oxidation
of CrN and CrAlN coatings on sacrificial supports
J. Lin et al. 2007
Reactive sputtering onto stainless steel and glass covered with
formvar (deposition temperature 150-250 oC)
- Different phase transitions correlated with XRD
- DSC, TGA and Kissinger plots for Cr0.78Al0.22N
- Reactions are more pronounced with increasing heating rates
- Reactions are shifted to higher temperatures with Cr content
Patent search
Software:
Derwent Innovation Index (ISI Web of Knowledge)
Patent Downloader (US, Japan, PCT)
Search for:
“ZrSiON”
“ZrAlON”
“TiAlON”
“AlCrON”
“Aluminium die casting coatings”
“Oxynitride”
“Coatings AND “die”
“Chromium” AND “Silicon” AND “Oxynitride”
“Chromium” AND “Silicon” AND “Nitride”
ZrSiON
US2006159933-A1
ZrSiOxNy/SiNx/NbZrOx/SiNx/glass, multilayer1)
US2006121290-A1
Si3N4/ZrSiOxNy/NiCrOx/Ag/ZnOx/glass1)
JP2004074361-A
SixMyN, SixMyC, SixMyCN, SixMyNO (M=Ti, Al, Cr,
Zr, V, Hf, Nb, Mo, W) hard coatings2)
EP742182-A1
Oxides of Zr, Y, Mg in Si3N4 matrix, cutting tools3)
JP6015502-A
Si3N4/ZrO2/ZnN /MgSiZrON, cutting tools3)
JP5305721-A
SiON, SiZrON, SiAlON, SiZrAlON, thermal head4)
JP63095161-A
Si3N4/ZrO2/Al,Y-oxide mixture, tool material2)
JP60021887-A
Al/Zr/Hf-oxides or oxinitrides, cutting tools5)
EP117936-A
Si3N4/Mg/Sr/RE/ZrO2 sintered workpiece6)
JP90016271
Si3N4 + Al, Si, Y, Zr-oxides, oxinitrides7)
1)Guardian, 2)Sumimoto, 3)Mitsubishi, 4)Toshiba,5)Nippon
Tungsten, 6)NGK
Insulators, 7)Asahi Glass.
No evidences for Al die casting, diffusion barriers, TC
ZrAlON
JP2005279917-A
WC/TiN/-(AlxZrx)2O3, double layer, cutting tool1)
JP2004322251-A
AlTiZrO…TiAlYZrN, graded, multilayer, cutting tool2)
DE4432182-A1
Si3N4/MSiON (M=Al, Zr, Li, P or Mg), low-TC3)
JP4114955-A
Al2O3/[MN(MC, MON) M=Ti, Zr, Hf, Y, Mg, Ca]1)
EP271237-A
AlN/AlON/(MN, M=Ti, Zr or Hf), composite4)
JP62288162-A
(Zr or Hf-oxide)/(Al2O3 or AlON)/(CrN/SiN) composite5)
JP60021887-A
(M-oxide or MON, M=Al, Zr, or Hf)/Si3N4 , cutting tool6)
JP2004174615-A
AlZr(ONC), alternating multilayers1)
1)Mitsubishi, 2)Shinko
Kobelko, 3)Isuzu Motors, 4)Minnesota Mining,
5)Toshiba, 6)Nippon Tungsten.
No evidences for to Al die casting, diffusion barriers, one TC
TiAlON
JP2006315164-A TiCON/-Al2O3/, cutting tool, preferred orientation1)
JP2006289586-A TiCON/(Al1-xCrx)2O3, cutting tool, preferred orientation1)
JP2006181706-A TiaSibNc/(Al,Ti,M)N or (CON)/(ON), cutting tool2)
JP2006043853-A TiCON/Al2O3 importance of -Al2O3 inclination angle1)
EP1566463-A1
Al,Cr,Ti,Y/(NO), anti-wear coating3)
JP2005205547-A -Al2O3/(TiN or TiCON), bilayer1)
CN1587435-A
TiAlON (18-36,17-32,4-24,27-41%), H=32 GPa4)
JP2004344990-A AlO/TiN multilayer, alternating high Al/high Ti content5)
JP2004322251-A AlTiZrO/TiAlN multilayers, cutting tool5)
JP2004218049-A TiAlNO, hard coating5)
1)Mitsubishi, 2)Sumimoto, 3)Juergen
Bach, 4)Shanghai Tool, 5)Shinko Kobelko.
One really TiAlON, no evidences for Al die casting, diffusion
barriers, TC
AlCrON
JP2004344991-A AlO/CrN multilayer, alternating high Al and Cr content1)
1)Shinko
Kobelko,
No evidences for to Al die casting, diffusion barriers, one TC
Coatings for Al die casting (1)
US2005263261-A1
MN coating wit graded Al concentration1)
WO2004059030-A2 AlxCry(ON)z2)
US2002108679-A1
-TiAl(+Y)3)
EP1226030-A
Doped CrN4)
WO200115837-A
(Ni-Be) alloy (1-3%Be)5)
JP11151563-A
Nb2O5 + (heat resistant Ni- or Co-alloy)6)
JP7204822-A
TiAlN/(TiN or Ti)/Base7)
JP7204782-A
Electroless Ni-coated layer8)
JP6100981-A
(Cu,Al,Cr,Fe material)+ (Al2O3 coatings)9)
JP177328-A
TiN, TiC, TiCN9)
JP4100667
Nb, Mo, or W coatings6)
1)Colorado
school mines, 2)Unaxis, 3)Authors, 4)Ionbond, 5)Brush Wellman,
6)Daido Tokushuko, 7)Ube Ind, 8)Matsumoto, 9)Nippon steel.
Coatings for Al die casting (2)
JP2225033-A
(Fe,Cr-steel+Al2O3 particles+Cr2O3) anti-sticking in Al1)
JP1118355-A
ZrO2 or YSZ coatings2)
DE3609051-A
Cr,Fe,C-alloy coating (10-20% Cr, 2-4% C)3)
JP60221542-A
Al,Mo,Ni-base alloy (4-10% Al, 13-23% Mo)4)
JP59202136-A
SiO2, Al2O3, SiN coatings (+adhesive layer)5)
GB2100636-A
Thermally insulating metal oxide µm-particles layer6)
JP7704586-B2
W- or Mo-oxides + graphite particles7)
1)Nippon
Steel, 2)Aisin Seiki, 3)Volvo AB, 4)Hitachi Metals, 5)Toyota,
6)Swiss Aluminium, 7)Mallory & Co.
Oxynitrides-1
KR2006089253-A
Fabricating refractory materials with AlON1)
JP2006315164-A
TiCON/-Al2O3/, cutting tool, preferred orientation2)
JP2006334720-A
TiN(TiNO)/Cr2O3+SiN(solid solution)/-Al2O33)
US2006240971-A1
SiAlON (two phases ’ + ’ + REM), ceramic body4)
DE102005047449-A AlON,TiBN, TiAlN, VN, ZrN etc., PVD coatings5)
WO2006097833-A1
ROxNy, e.g. TaON, TaZrO3N, H=25-30 GPa6)
WO2006097410-A1
-MSi12-(m+n)Al(m+n)OnN16-n (M =Ca, Ba, .., REM)7)
JP2006175596-A
AlON+MON (M = Zr, Ti, …)8)
JP2005271133-A
Cubic (TixAly, TixSiy, or TixAlySiz)NO9)
WO2006084404-A1
4-Layer coating, outer layer: AlCrNO, AlCrBN etc10)
1)Kigam, 2)Mitsubishi
(many similar patents), 3)Toshiba, 4)Kennametal (many),
5)Winkhlover, 6)ELEMENT SIX (high R coordination number),
7)DIAMORPH CERAMIC, 8)Hitachi, 9)Sumimoto, 10)Unaxis, 11)KYOCERA
No evidences for Al die casting, diffusion barriers, TC
Oxynitrides-2
CN1587435-A
TiAlON (18-36,17-32,4-24,27-41%), H=32 GPa1)
US2006154108-A1
MNO (M = Al, Si, TiAlSi, AlCrVSi)2)
CN1583547-A
VCrON nano-powders, CVD-prepared3)
JP2005125411
Ti(N, O, CO..)/(Cr1-xAlx)2O3, cutting tool4)
WO2005016847-A1 /-SiAlON/(material B)5)
JP2004345000-A
TiYON, gradients of Y,O and Ti,N concentrations6)
JP2004344999-A
TiYON, alternating Y,O and Ti,N gradients6)
JP2004344991-A
AlCrON, gradients of Al,O and Cr,N concentrations6)
JP2004344990-A
AlCrON, alternating Al,O and Cr,N gradients6)
JP2004345006-A
TiAlSiON, alternating, continuous Al, Ti change7)
JP2006150583-A
TiON, (111)-deposited, (with 0.1-1% inert-gas)11)
1)Shanghai
Tool, 2)Sumimoto, 3)Uni Donghua, 4)Mitsubishi, 5)Seramtec,
6)Shinko Kobelko, 7)Shinko Kobelko+Mitsubishi.
No evidences for Al die casting, diffusion barriers, TC
“Coatings” AND “die”-1
EP1688513-A1
(Al1-aVa)(C1-xNx). Excellent hardness and lubricity1)
US6929851-B1
Hard particles in binder. Adhesion, wear resistance2)
WO2004059030-A2
(AlyCr1-y)X, X=N, NO, …3)
JP9209121-A
Amorphous TiN, C-ions implanting4)
JP9078227-A
(TiX)/(TixAlyY), X=C, N, or CN, Y=C, N, or CN5)
US5616372-A
Diamond coating on hard substrate6)
JP6306645-A
TiN multilayers, TiCxNy coatings, wear and toughness7)
EP543444-A
Coating: hard corrosion and erosion resistant material8)
SU1708941-A1
Aluminizing steel dies and moulds8)
JP4224104-A
TixAl1-xCryN1-y, x=0.5-0.9, y=0.1-0.59)
1)Kobe
Seiko Sho. 2)TDY Ind. 3)Unaxis. 4)Sumimoto Electric. 5)Toshiba Tung.
6)Syndia. 7)Sumimoto Metal. 8)Zaporo Ind. 9)Nippon Steel.
“Coatings” AND “die”-2
EP310043-A2
(Si3N4 or SiC)/(AlN or AlON)/(Al- or Zr-oxide)1)
US4804642-A
Ceramic mixture (AlBO)+MN (C), M=Al,Ti,Zr,Hf,Si,B2)
JP1014185-A
Hard-C coating3)
EP289173-A1
Alternating TiN- and Ti-layers, wear resistant4)
EP275978-A2
Al-, Zr-, Y-oxide particles in continuous oxide layers1)
GB2100636-A
Thermally insulating µm-sized metal oxide layer5)
JP77045286-B2
W- or Mo-oxide films. MoNiFe/(WO3+graphite) for ADC6)
US3674572-A
Nitrided Ta, Nb and V alloys, with Ti- and Zr-additions7)
DE2149914-A
WC and MoC coatings8)
JP3107462-A
SiC/TiN/TiC or Si3N4/TiN (C) on Ni-based alloy9)
1)GTE
Lab Inc. 2)Aluminium Co. America. 3)Idemitsu Petrochem. 4)British Petr.
5)Swiss Aluminium. 6)Mallory & Co. 7)Surface technology. 8)Fulmer Res. Inst.
9)Seiko Instr.
Different
JP2004306166-A
(AlTiSiO, high Al,O)/(TiAlYSiN, high Ti,N) multilayer1)
WO2006005217-A2 AlxCrySizBv(NO)w, cutting tool2)
EP 1 413 648 A1
TiN, TiC, TiBN, TiCN, ZrC, multilayers
EP 1 382 709 A1
TiSiN, TiSiCN, TiSiCNO, CrN, TiCrN, CrCN, CrCNO,
multilayers
1)Shinko
Kobelko, 2)Unaxis.
Chromium AND silicon AND oxynitride (48, 8 relevant)
JP2006334720-A
CrON intermediate layer, oxide outer layer, Ti innen1)
JP2006181706-A
Multilayer TiSiN, AlNTiM (M=Cr, V, Y, Zr, Mo), TiSiCN
layers2)
JP2005271190-A
MCON, M=Al, Si, or IVA, Va, VIA groups3)
JP2004269985-A
Oxynitrides of La, Cr, Al, B, Si, Ti4)
JP2004074361-A
Oxynitrides of MSi, M=Ti, Al, Cr, Zr, V, Hf, Nb, Mo2)
JP2004066361-A
Oxynitrides of MSi, M=Ti, Al, Cr, Zr, V, Hf, Nb, Mo2)
JP2059472-A
Cr,Si-oxides + Cr,Si-nitroxydes5)
JP56038446-A
Composites SiN, AlON (with Cu, Co, Ni, Cr)6)
1)Toshiba
Tungaloy, 2)Subimoto Denko, 3)Sumimoto Electric, 4)Mitsubishi,
5)NGK SPARK PLUG Co., 6)Kuratomi.
No ADC, TC, DB.
“Chromium” AND “Silicon” AND “Nitride” (a lot)
JP2005187859-A
1)Ion
CrSiN columnar/CrSiN composite, … multilayer1)
Kogaku Kenkyusho,
Conclusions
- Three-layer system can be beneficial:
(1) Working layer (non-wetting, wear- and oxidation resistance)
(2) Multilayer or graded layer to minimize stresses
(3) Adhesion layer with H13
- Working layer composition
- Smoother surface finish and thicker coatings result in
better corrosion resistance. Importance of wettability studies
- ZrSiON: no patents for ADC
- CrSiON: no patents for ADC
- AlCrON: no patents for ADC
- ZrAlON: no patents for ADC
- TiAlON: one patent for ADC, no patents for DB, TC