Transcript Document

A Solenoidal Basis Method For Efficient Inductance Extraction

H

emant Mahawar Vivek Sarin Weiping Shi Texas A&M University College Station, TX

Introduction

Background

Inductance between current carrying filaments

Kirchoff’s law enforced at each node

Background …

Current density at a point J

    j ω V  μ 4 π

r J

  

r

 d V    Φ 

Linear system for current and potential

 R  j ω L  I  BV 

Inductance matrix

L kl  μ 1 4 π a k a l   r k  V k r l  V l

u k r k

 

u l r l

dV l dV k 

Kirchoff’s Law

B T I  I d

Linear System of Equations

 R j B T ω L B 0     I V      0 I d   

Characteristics

Extremely large; R, B: sparse; L: dense

Matrix-vector products with L use hierarchical approximations

Solution methodology

Solved by preconditioned Krylov subspace methods

Robust and effective preconditioners are critical

Developing good preconditioners is a challenge because system is never computed explicitly!

First Key Idea

Current Components

Fixed current satisfying external condition I d (left)

Linear combination of cell currents (right)

Solenoidal Basis Method

Linear system

 R j B T ω L B 0     I V      F 0    

Solenoidal basis

Basis for current that satisfies Kirchoff’s law

Solenoidal basis matrix P:

Current obeying Kirchoff’s law:

I B T P   Px 0  B T I  0

Reduced system

P T  R  j ω L  Px  P T F 

Solve via preconditioned Krylov subspace method

Local Solenoidal Basis

Cell current k consists of unit current assigned to the four filaments of the kth cell

There are four nonzeros in the kth column of P: 1, 1, -1, -1

Second Key Idea

   ~ L ~ L kl  ωμ 4 π 1 a k a l   r k  V k r l  V l

r k

1 

r l

dV l dV k 

Approximate reduced system

P T  R  j ω L  P  P T P  ~ R  j ω ~ L     1 ~ L

Preconditioning

M

 1  ~ L  ~ R  j ω ~ L  -1 ~ L ~ L kl  ωμ 4 π 1 a k a l   r k  V k r l  V l

r k

1 

r l

dV l dV k

M low

 1  ~ L ~ R 1 ~ L

M high

 1   j ω ~ L 

Preconditioning involves multiplication with

M

 1

Hierarchical Approximations

Components of system matrix and preconditioner are dense and large

 

Used for fast decaying Greens functions, such as 1/r (r : distance from origin)

Reduced accuracy at lower cost

Examples

Fast Multipole Method: O(n)

Barnes-Hut: O(nlogn)

FASTHENRY

Uses mesh currents to generate a reduced system

W T  R  j ω L  Wx  b 

Approximation to reduced system computed by sparsification of inductance matrix

 W T  R  j ω ˆ  W  

Preconditioner derived from Sparsification strategies

DIAG: self inductance of filaments only

CUBE: filaments in the same oct-tree cube of FMM hierarchy

SHELL: filaments within specified radius (expensive)

Experiments

Benchmark problems

Ground plane

Wire over plane

Spiral inductor

Operating frequencies: 1GHz-1THz

Strategy

Uniform two-dimensional mesh

Solenoidal function method

Preconditioned GMRES for reduced system

Comparison

FASTHENRY with CUBE & DIAG preconditioners

Ground Plane

Problem Sizes Mesh 33x33 65x65 129x129 257x257 Potential Nodes Current Filaments 1,089 4,225 16,641 66,049 2,112 8,320 33,024 131,584 Linear System 3,201 12,545 49,665 197,633 Solenoidal functions 1,024 4,096 16,384 65,536

Comparison with FastHenry Preconditioned GMRES Iterations (10GHz) Mesh 33x33

FASTHENRY

DIAG 13

FASTHENRY

CUBE 13 Solenoidal Method 5 65x65 129x129 16 21 17 19 6 7 257x257 513x513 26 28 9 14

Comparison … Mesh 33x33 65x65 129x129 257x257 513x513 Time and Memory (10GHz)

FASTHENRY

DIAG Time (sec) Mem (MB) 2 10 13 42 95 835 177 734 -

FASTHENRY

CUBE Time (sec) Mem (MB) 2 10 17 42 142 1364 177 734 Solenoidal Method Time (sec) Mem (MB) 2 1 12 5 68 409 2925 17 69 298

Preconditioner Effectiveness Mesh Preconditioned GMRES iterations Frequency (GHz) Filament Length 1 10 100 33x33 65x65 129x129 256x256 1/32 1/64 1/128 1/256 6 6 8 11 5 6 7 9

M high

 1   j ω ~ M

5 5 7 8 1000 5 5 6 8

Wire Over Ground Plane

Comparison with FastHenry Preconditioned GMRES Iterations (10GHz) Mesh 33x33

FASTHENRY

DIAG 13

FASTHENRY

CUBE 11 Solenoidal Method 4 65x65 129x129 13 13 14 12 5 6 257x257 513x513 3 3 8 12

Comparison … Mesh 33x33 65x65 129x129 257x257 513x513 Time and Memory (10GHz)

FASTHENRY

DIAG Time (sec) Mem (MB) 2 10 12 42 79 719 178 735 -

FASTHENRY

CUBE Time (sec) Mem (MB) 2 10 16 42 124 2732 178 735 Solenoidal Method Time (sec) Mem (MB) 1 1 9 4 55 351 2427 15 61 260

Preconditioner Effectiveness Mesh Preconditioned GMRES iterations Frequency (GHz) Filament Length 1 10 100 1000 33x33 65x65 129x129 257x257 1/32 1/64 1/128 1/256 5 6 8 4 5 6 12 8

M high

 1   j ω ~ M

4 5 6 8 4 5 6 7

Spiral Inductor

Preconditioner Effectiveness Mesh Preconditioned GMRES iterations Frequency (GHz) Filament Length 1 10 100 1000 33x33 65x65 129x129 257x257 1/32 1/64 1/128 1/256 7 8 10 6 7 9 16 12

M high

 1   j ω ~ M

6 7 9 11 6 7 9 11

Concluding Remarks

Preconditioned solenoidal method is very effective for linear systems in inductance extraction

Near-optimal preconditioning assures fast convergence rates that are nearly independent of frequency and mesh width

Significant improvement over FASTHENRY w.r.t. time and memory Acknowledgements: National Science Foundation