Transcript Slide 1
INDIRECT TERAHERTZ SPECTROSCOPY OF MOLECULAR IONS USING HIGHLY ACCURATE AND PRECISE MID-IR SPECTROSCOPY Andrew A. Mills, Kyle B. Ford, Holger Kreckel, Manori Perera, Kyle N. Crabtree, Benjamin J. McCall University of Illinois, Department of Chemistry June 24, 2009 Indirect THz Spectroscopy Outline • • • • • • • Motivations How-to Radiation source Increasing accuracy and precision Target ions Sample production and detection Future direction THz or IR Spectroscopy • THz – The THz regime opens new possibilities for interesting spectroscopy – Growing yet limited availability of THz sources – High sensitivity techniques infrequent • IR – Many available sources (OPO, DFG, QCL) – Historical accuracy ~30 MHz • Indirect THz via precise IR spectroscopy 5 Indirect THz - HNN+ & Other Linear Molecules 3280 J’ 4 3260 Even Combination differences 3 cm-1 IR Transitions 2 3240 80 Odd Combination Differences 1 0 -1.0 -0.5 0.0 0.5 1.0 0.0 1.5 2.0 0.5 6 60 1-0 Rotational Transition 5 Reconstructed Rotational Transitions cm-1 5 3300 40 4 20 3 0 2 1 0 0.0 -1.0 -0.5 0.0 0.5 1.0 J” 0.5 1.5 2.0 Test Molecule (HNN+) - Proof of Concept Dn THz ~ DnIR + DnMicrowave 1.0 1.0 FIB #'s and the Fit Dv (Line Using Accuracy)~30 MHz Normalized Intensity (max @ 30K) Normalized Intensity (max @ 30K) J Lower Reconstruction Terahertz 0.8 Fit Difference 0.8 Using FIB #'s and the J Lower Reconstruction Terahertz Difference GHz GHz MHz 0 93.17 93.17 0 GHz GHz MHz 30 K 1 186.36 186.34 14 0 93.17 93.17 0 0.6 0.6 2 279.52 279.51 7 1 186.36 186.34 14 300 K 3 372.70 372.67 25 2 279.52 279.51 7 1000 K 4 465.84 465.82 12 3 372.70 372.67 25 0.4 0.4 5 559.00 558.97 31 4 465.84 465.82 12 6 652.12 652.10 20 5 559.00 558.97 31 7 745.24 745.21 34 6 652.12 652.10 20 8 838.33 838.31 18 7 745.24 745.21 34 0.2 0.2 9 931.42 931.39 35 8 838.33 838.31 18 10 1024.46 1024.44 14 9 931.42 931.39 35 11 1117.51 1117.48 27 10 1024.46 1024.44 14 0.0 0.0 12 1210.49 1210.49 8 11 1117.51 1117.48 27 3050 3100 3050 3150 3100 3200 3150 13 1303.48 1303.47 13 12 1210.49 1210.49 8 Frequency (cm-1) 14 1396.41 1396.42 9 13 1303.48 1303.47 13 15 1489.33 1489.34 5 14 1396.41 1396.42 9 16 1582.19 1582.23 32 15 1489.33 1489.34 5 1) Increase IR transition accuracy 17 1675.04 1675.08 33 16 1582.19 1582.23 32 17 1675.04 1675.08 33 3250 3200 3300 Frequency (cm-1) Gudeman, C. S., Begemann, M. H. Pfaff, J.; Saykally, R. J. Velocity Modulated IR laser spectroscopy of Molecular Ions: The v1 band of HNN+ J. Chem. Phys 78(9) 1983 5837-8 P. Verhoeve, E. Zwart, M. Versluis, M. Drabbels, J.j. ter Meulen, W.Leo Meerts, A. Dymanus. Rev. Sci. Instrum. 61(6) 1990 16121625. DFG 532 nm pump laser Nd:YAG 1064 nm Ti:Sapph 700 – 1000 nm l/4 l/2 Reference Cavity AOM InSb PPLN LP filter l-meter 20 MHz Accuracy Polarising Prism Achromat l/2 Optical Isolator dichroic Fabry-Perot Interferometer Fiber-Optic to Frequency Comb Menlo Systems Optical Frequency Comb • Stabilized mode-locked fs laser FT equally spaced lines in frequency • Frequency reference OCXO disciplined to GPS – 1x10-12 in 1s 200 Hz Accuracy • Unknown laser comb • Laser frequency ~ 1-100 kHz Beat Frequency l/2 l/2 PBS Target ions – Small Linear Polyatomics • IR transitions and J=10 Microwave transitions recorded • HNN+, HCS+, HOC+, HCO+, CO+, CH+, HCNH+ are known interstellar molecules. • Probe of chemical intermediates and conditions • Make in plasma discharge detector Ion Beam Spectrometer @ 925 nm •NarrowingTi:Sapph of line-widths 1st bender lens Source chamber Optical Isolator •Physically separate ions l-meter from neutrals Etalon FPI dependent Doppler Finder •Mass splitting from cavity AOM •Characterize w/ N2+ apertures lens beam modulator 2nd bender drift region Mode Matching Optics TOF detector cw-CRDS cw-CRDS/Concentration Modulation CRDS •99.99% RD Mirrors 33 ms time constant amin =4x10-9 cm-1 •Concentration Modulation Beam on/ Beam off amin =5x10-10 cm-1 Reduces long term Drift Representative Scans 1-0 A2Pu-X2Sg+ -9 Absorbance x10 (cm-1) x10-9 amin=4.5e-10 20 1.0 15 0.8 10 0.6 5 0.4 0 -5 0.2 -10 924.405 924.406 924.407 924.408 Wavelength (nm) 924.409 924.410 detector Ion Beam Velocity Modulation pzt 1st •Use lower finesse cavity lens bender Source chamber •Use lock in detection to further reduce noise and increase signal steerer PLL apertures lens 2nd bender •Modulate the velocity of the ion beam by applying field to drift region beam modulator drift region TOF detector Ion BeamReconstruction + Frequency Comb = SPRIBES ? Teraher Terahertz Difference DISCHARGE Reconstruction -1 cm-1 l (cm-1) MHz cmMHz cm-1 3.108 3.108 9E-060 0.27 0.273.108 3.108 Low Comb 6.216 6.216 0.0005 14.0 0.014 1 6.216 Accuracy 6.216 Accuracy Reconstruction Terahertz Difference DISCHARGE SPRIBES 9.324 9.324 0.0002 6.89.324 0.007 2 9.324 -1 -1 cm 12.432 cm l (cm-1) MHz MHz 12.431 0.0008 25.2 0.025 3J” 12.432 12.431 3.108 3.108 9E-06 0.27 0.27 15.539 15.538 0.0004 11.8 0.012 4 15.539 15.538 6.216 6.216 0.0005 14.0 0.014 18.646 18.645 0.0010 31.1 0.031 5 18.646 18.645 9.324 9.324 0.0002 6.8 0.007 21.752 21.752 0.0007 19.9 0.020 6 21.752 21.752 12.432 12.431 0.0008 25.2 0.025 24.859 24.858 0.0011 33.7 0.034 7 24.859 24.858 15.539 15.538 0.0004 11.8 0.012 27.964 27.963 0.0006 18.2 0.018 8 27.964 27.963 18.646 18.645 0.0010 31.1 0.031 31.069 31.068 0.0012 34.8 0.035 9 31.069 31.068 21.752 21.752 0.0007 19.9 0.020 34.172 34.172 0.0005 14.4 0.014 10 34.172 34.172 24.859 24.858 0.0011 33.7 0.034 37.276 37.275 0.0009 27.4 0.027 11 37.276 37.275 27.964 27.963 0.0006 18.2 0.018 40.378 40.377 0.0003 7.59 0.008 12 40.378 40.377 31.069 31.068 0.0012 34.8 0.035 43.479 43.479 0.0004 13.4 0.013 13 43.479 43.479 34.172 34.172 0.0005 14.4 0.014 46.579 46.580 0.0003 9.5 0.009 14 46.579 46.580 37.276 37.275 0.0009 27.4 0.027 49.679 49.679 0.0002 5.4 0.005 15 49.679 49.679 40.378 40.377 0.0003 7.59 0.008 52.776 52.777 0.0011 31.8 0.032 16 52.776 52.777 43.479 43.479 0.0004 13.4 0.013 55.873 55.875 0.0011 33.1 0.033 17 55.873 55.875 46.579 46.580 0.0003 9.5 0.009 58.968 58.970 0.0021 63.6 0.064 18 58.968 58.970 49.679 49.679 0.0002 5.4 0.005 62.063 62.065 0.0025 73.8 0.074 19 62.063 62.065 52.776 52.777 0.0011 31.8 0.032 cm-1 0 1 2 3 40 51 62 73 84 95 6 10 7 11 8 12 9 13 10 14 11 15 12 16 13 17 14 18 15 19 16 • Ion beam Narrower line widths • Narrower line widths accurate line frequencies • Well calibrated lasers, highly accurate spectra • Traditional accuracy 30 MHz, expect 2-3 orders of magnitude better than that Conclusions • The THz regime opens new possibilities for interesting spectroscopy • Indirect spectroscopy can be used to obtain the transitions for many interesting molecular ions of the interstellar medium • Indirect spectroscopy requires – Highly accurate and precise frequency references such as a frequency comb – Sub-Doppler line widths from fast ion beams – Sensitive, cavity enhanced spectroscopy RESEARCH CORPORATION OO O for SCIENCE ADVANCEMENT A Foundation dedicated to science since 1855