Слайд 1 - rssi.ru

Download Report

Transcript Слайд 1 - rssi.ru

Recent results on measurements
and interpretation of CMB
fluctuations
A. Doroshkevich
Astro Space Center
of the Physical Institute RAS
Moscow, Russia
List of the problems
•
•
•
•
•
•
•
•
Observations of the CMB
Separation of the CMB and galactic foregrounds
Power spectrum of the CMB
Polarizations of the CMB
Standard cosmological model
Anomalies of the WMAP results
Extensions and limitations of the
cosmological models
OBSERVATIONS
WMAP 23, 30, 40, 60, 90 GHz, 1<l<950
ATACAMA 148,218, 277 GHz, 6m, 600<l<8000
BICEP
100, 150, 220 GHz, 21<l<335
QUaD 100, 150 GHz, 2.6m, 200<l<2000
SPT 95, 150, 220 GHz,2000<l<9500
WMAP observations
ν= 22.8, 33.0, 40.7, 60.8, 93.5 GHz
λ= 1.3, 0.9, 0.7, 0.5, 0.3 cm
θ~20’, ΔT~3-5 10-6 K
Separation of the CMB and galactic foreground
Incorrect problem (2 ↔ 3): ILC approach
Observed signal S(θi) is superposition of the CMB
signal C(θi) and Galactic foreground F(θi)
• S1(θi)=C(θi)+F1(θi), S2(θi)=C(θi)+F2(θi),
• For the homogeneous sample of pixels (ILC)
• C(θi)=α S1(θi)+(1-α) S2(θi)=C+F2+α(F1–F2)
•
α=-<Q2Q12>/<Q122>
• Q1 =S1-<S1>, Q2 =S2-<S2>, Q12 =Q1-Q2
• <Q1> =0, <Q2>=0, <Q12>=0
Decomposition of temperature – power
spectrum
here Φlm and alm are the phase
and amplitude of fluctuations.
Power spectrum of fluctuations is
Cl  
m
l (l  1)
| alm | Tl 
Cl
2
2
2
The shape of the power spectrum is well known
for many cosmological models
Planck satellite
|dk| exp(iFk)
transformed Planck
FT-1[ |dk|exp(iFk)]
Max Planck
|dk| exp(iFk)
Planck satellite and transformed Planck have the same
power spectrum (same |dk| ), they have different “faces”
due to different phases:
It is phase Fk that keep Max’s face, not amplitude |dk| !!
WMAP-7 power spectrum
WMAP-ACBAR – QUAD power spectrum
ATACAMA power spectrum
POLARIZATION
• Compton scatter of CMB (E-mode)
• 2<l<20 – reionization, (z~10)
• l>20 – recombination, (z~1000)
Q U 
1
1
j
j
j


T
Tik  ( Sik  g ik S j )  ( ij Pk   kj Pi )

2
2
U  Q 
Q  D1S  D2 P, U  D2 S  D1P
On the scalar modes l>2 (E-modes)
• and vortex and tensor modes (B modes)
WMAP-7
Polarization
around the
temperature
cold spot
(simulation,
observation
V+W
and noise
V+/-W)
Polarization
around the
temperature
hot spot
(simulations,
observations
V+W
and noise
V+/-W)
BICEP-2010, (low l<300)
QUAD (l>300)
QUAD
Parameters of the cosmological model
Main results of the WMAP
•
•
•
•
•
•
•
•
1. Complex reconstruction of the cosmological
model
Six parameters fit
In contrast with SN1
Comparison with the Planck mission –
Tensor – scalar , r, ratio and
the redshift of reionization zreio
Multi parametric fits
Problems of this high precision
separation: anomalies
•
•
•
•
•
•
•
1. Quadrupole ΔT2=249μK2
instead of the expected ΔT2=1250μK2
2. Axis of evil - common alignment of
quadrupole and octupole
3. Asymmetry between north and south
hemispheres
4. System of deep walls
Possible explanations
•
•
•
•
Small quadrupole and cold spots can be
explained with the anisotropic cosmology
The axis of evil and north – south asymmetry
can point out the unknown noise.
• Bennett et al., 2011, ApJS,192,17B:
• all anomalies are random effects
• Doroshkevich, Verkhodanov, 2011, PhRvD, 83,043002:
• The first three anomalies are caused by
• bad separation between the CMB and foregrounds
Separation between the CMB and
foreground - ILC approaches
•
•
•
•
•
•
•
The CMB map itself is interesting for purposes:
Homogeneity and isotropy of the Universe –
anisotropic cosmological models
Possible signatures of non-trivial topology
and mirror symmetry.
Correlations of the CMB with other emissions
Signatures of non Gaussianity of the CMB
• Discussion in Delabrouille et al. arXiv:0807.0773
• Our corrections of the ILC approach:
•
It is unstable – discret instability
Correction of the power spectra
Anisotropic cosmology
(Perivolaropoulos arXiv:1104.0539)
• Bulk Flows KSZ - WMAP 263 – 48; (Kashlinsky & Atrio 2009)
• Galactic rotation (z<0.04) 52 – 68
(Longo 2011)
• CMB Quadrupole WMAP-7 283 – 65; 360 – 63; 15 – 26;
ΔT22= 249μK2
• CMB Quadrupole DV-11
285 – 9; 13 - 170; 60 – 77;
ΔT22=1070μK2
Anisotropic cosmology (9 Bianchi models)
•
•
•
•
•
•
Anisotropy of cosmological expansion only
Anisotropy of the curvature of the Universe
Homogeneous magnetic field
Matter rotation
All four causes lead to quadrupole anisotropy
We can measure the combine effect only in a
framework of anisotropic cosmological model
• These effects are relatively small –
• Demianski, Doroshkevich, 2007,PhRvD, 75, 123517
Small scale fluctuations - SZ effect
KSZ is max at   3.8,  216GHz
T SZ is max at   6.8,  384GHz
T SZ is min at   2.3,  130GHz
T SZ  0 at   3.8,  216GHz
KSZ as the standard candle
T / T   T v/c
South Pole observations
The
Theend
end
WMAP
BICEP
Parameters of the cosmological model
QUAD 100 & 150 GHz
WMAP
Model 4
ΔT22=249μK2 , ΔT22=1070μK2
WMAP-7
ILC separation for two channels
•
•
•
•
•
•
•
•
S1(θi)=C(θi)+F1(θi), S2(θi)=C(θi)+F2(θi),
For the homogeneous sample
C(θi)=α S1(θi)+(1-α) S2(θi),
α=-<Q2Q12>/<Q122>
Q1 =S1-<S1>, Q2 =S2-<S
>
2>, Q12 =Q1-Q2
<Q1> =0, <Q2>=0, <Q12>=0
At the same time the precise solution is
αf (<F2> -<F1>)= <F2>, αf=<F2>/(<F2>-<F1>)=α
•
What is the homogeneous sample???
TSZ – KSZ theory
SPT – SZ & DSFG
BULK FLOW of CLUSTERS
• Method – KSZ from WMAP (l, b)D=263, 48
ACBAR
QUAD