Transcript Slajd 1

Superconducting FeSe studied by Mössbauer spectroscopy
and magnetic measurements
A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2,
K. Wojciechowski 3, Z.M. Stadnik 4
1
2 Solid
Mössbauer Spectroscopy Division, Institute of Physics,
Pedagogical University, Cracow, Poland
State Physics Department, Faculty of Physics and Applied Computer Science,
AGH University of Science and Technology, Cracow, Poland
3 Department
of Inorganic Chemistry, Faculty of Material Science and Ceramics,
AGH University of Science and Technology, Cracow, Poland
4 Department
of Physics, University of Ottawa, Ottawa, Canada
Fe-Se phase diagram
The following phases form close to the FeSe stoichiometry:
1) tetragonal P4/nmm structure similar to PbO, called β-FeSe (or α-FeSe)
2) hexagonal P63/mmc structure similar to NiAs, called δ-FeSe
3) hexagonal phase Fe7Se8 with two different kinds of order, i.e., 3c (α-Fe7Se8) or 4c (β-Fe7Se8)
A tetragonal P4/nmm phase transforms into Cmma orthorhombic phase at about 90 K,
and this phase is superconducting with Tc ≈ 8 K.
Crystal structure of -FeSe
Aim of this contribution is to answer two questions concerned with
tetragonal/orthorhombic FeSe:
1) is there electron spin density (magnetic moment) on Fe ?
2) is there change of electron density on Fe nucleus
during transition from P4/nmm to Cmma structure ?
Fe1.05Se
A synthesis was carried at 750°C for 6 days in evacuated silica tube.
Subsequently the sample was slowly cooled with furnace to room temperature.
Resulting ingot was powdered and annealed at 420°C for 2 days in evacuated silica
tube and subsequently quenched in ice water.
Experimental
1) Powder X-ray diffraction pattern was obtained at room temperature by using
Siemens D5000 diffractometer.
2) Magnetic susceptibility was measured by means of the vibrating sample
magnetometer (VSM) of the Quantum Design PPMS-9 system.
3) Mössbauer spectra were collected in temperature 4.2 K, in the range 75–120 K
with step 5 K and in the external magnetic field up to 9 T.
Efekt Mössbauera
przejście jądrowe
h
Spektroskopia mössbauerowska
Efekt Mössbauera - spektroskopia
Ruch źródła względem absorbenta powoduje dzięki efektowi Dopplera
zmianę energii kwantów 
V
E 
V
E
c
V  10 mm/s
1 mm/s  48 neV
V
hematyt Fe2O3
Oddziaływania nadsubtelne
1) Oddziaływanie elektryczne monopolowe
elektrostatyczne monopolowe oddziaływanie ładunku jądra
z ładunkiem powłok elektronowych
 Ze 2 c  r 2  
 δR (ρ s  ρ a )
δE  
 ε 0 E0

Oddziaływania nadsubtelne
2) Oddziaływanie elektryczne kwadrupolowe
oddziaływanie momentu kwadrupolowego jądra Q
z gradientem pola elektrycznego q wytwarzanym przez powłoki elektronowe
2
 3
 1  e qQ
EQ  EQ    EQ   
2
 2
 2
Oddziaływania nadsubtelne
3) Oddziaływanie magnetyczne dipolowe
oddziaływanie dipolowego momentu magnetycznego jądra 
z efektywnym polem magnetycznym H w obszarze jądra
Em  
Hm
I
Em 
H
I
Zakład Spektroskopii Mössbauerowskiej
Instytut Fizyki
Uniwersytet Pedagogiczny
ul. Podchorążych 2, 30-084 Kraków
www.elektron.up.krakow.pl
Fe1.05Se
Magnetic susceptibility measured upon cooling and subsequent warming in field of 5 Oe
- point A - spin rotation in hexagonal phase
- region B - magnetic anomaly
correlated with transition between orthorhombic and tetragonal phases
- point C - transition to the superconducting state
tetragonal
phase
transition
orthorhombic
orthorhombic
orthorhombic
and
superconducting
Change in isomer shift S
↓
Change in electron density  on Fe nucleus
S = +0.006 mm/s
↓
ρ = –0.02 electron/a.u.3
tetragonal
phase
transition
orthorhombic
orthorhombic
orthorhombic
and
superconducting
T (K)
S (mm/s)
Δ (mm/s)
 (mm/s)
120
0.5476(3)
0.287(1)
0.206(1)
105
0.5529(3)
0.287(1)
0.203(1)
90
0.5594(3)
0.286(1)
0.198(1)
75
0.5622(3)
0.287(1)
0.211(1)
4.2
0.5640(4)
0.295(1)
0.222(1)
Quadrupole splitting Δ does not change
- it means that local arrangement of Se atoms around Fe
atom does not change during phase transition
Mössbauer spectra obtained in external magnetic field aligned with γ-ray beam
Hyperfine magnetic field is equal to applied external magnetic field.
Principal component of the electric field gradient (EFG) on Fe nucleus
was found as negative.
Conclusions
1. There is no magnetic moment on iron atoms in the superconducting FeSe.
2. The electron density on iron nucleus is lowered by 0.02 electron / a.u.3
during transition from tetragonal to orthorhombic phase.