Burst analysis of TAMA300

Download Report

Transcript Burst analysis of TAMA300

Current status of burst gravitational wave
analysis of TAMA300 with ALF filter
T.Akutsu, M.Ando, N.Kanda, D.Tatsumi,
S.Telada, S.Miyoki, M.Ohashi and
TAMA collaboration
GWDAW10 UTB Texas 2005 Dec. 13
Contents
I.
II.
III.
Target Source
ALF filter
Flow of analysis



IV.
Trigger rate
Detection efficiency
Result
Summery
GWDAW10@UTB, Texas 2005 Dec. 13
I Target Source
 Burst GW signal from Supernovae Explosion

Time duration ~100msec
 Spike-like waveform
 GW RSS amplitude and Detector noise level
Simulation signals
A&A 393 523 (2002)
GW RSS amplitude of sources
located at 100pc
GW RSS amplitude of sources
located at the Galactic center
GW root sum square (RSS) amplitude
hrss 
GWDAW10@UTB, Texas 2005 Dec. 13
 | h(t ) |
2
dt
II ALF filter (Alternative Linear Fit filter)
A slope value of a raw of data (N samples) is used to trigger an event.
In this work, window size N = (0.4, 0.6, 0.9) [msec] C.Q.G. 22 (2005) S1303
GWDAW10@UTB, Texas 2005 Dec. 13
III Flow of analysis
RAWDATA
window
Conditioning
ALF filter
• AC line
• Violin mode
• Calibration peak
Filter Output
Trigger List
Trigger List
Time scale veto
C.Q.G. 20 (2003) S697-S709
This test is based on  2 distribution
of the filer output.
Monitor Veto
Event List
GWDAW10@UTB, Texas 2005 Dec. 13
Trigger rate
Analysis data
DataTaking9 of TAMA300 (Nov.2003-Jan.2004)
 Trigger rate of DT9
101
100
10-1
10-2
Without veto
Rejected time by veto
4.4 hours
10-3
10-4
10-5
Gaussian noise
Total
After time scale test
and monitor veto
102
Analysis time
187.3 hours
103
104
Athre
105
106
GWDAW10@UTB, Texas 2005 Dec. 13
182.9 hours
Detection efficiency

Monte Carlo simulation of 26signals
Injected signals
26 kinds of signals A&A 393 523 (2002)
We set threshold to be Ath  3.73 105,
which corresponds at the level of 0.51 events/day with 90% confidence level.

Result of simulation
1
0.8
0.6
0.4
0.2
0
10-19
10-18
10-17
10-16
hrss
10-15
10-14
GWDAW10@UTB, Texas 2005 Dec. 13
Detection efficiency
X 10-19
Waveform depends on the type of signal.
Type I Regular collapse
Type II Multiple bounce collapse
Type III Rapid collapse
TypeI
TypeII
TypeIII
1
0
-1
-2
0
20
Time (msec)
 Simulation result of Each type signal
TypeIII
TypeI
TypeII
10-18
hrss
10-16
10-14
GWDAW10@UTB, Texas 2005 Dec. 13
40
Result
 Rate [events/day] with confidence level 90%
5
TypeI
TypeII
TypeIII
4
3

2
R(hrss ) 
1
0
10-18
Rate
0.51 [events/da y]
 (hrss )
 : Detection efficiency
10-17
10-16
hrss
hrss  110 16
10-15
0.62 events/day
GWDAW10@UTB, Texas 2005 Dec. 13
IV Summery
We implemented the time scale veto and the monitor veto
in order to remove fake events
 Detection efficiency was evaluated by Monte Carlo simulation.
16
 As a result, we obtained 0.62 events/day at hrss  10

Improvement of data conditioning
 Adjustment of filter parameters
 Coincidence analysis for reduction of fake events

GWDAW10@UTB, Texas 2005 Dec. 13
Simulation
Source-distribution model
Astron.Journal 125 1958 (2003) sky-survey observation
• antenna pattern
• sensitivity an event location
• polarization of a source
10-4
1.25 105
10-5
10-6
20
42
100
Athre
500
6.8 103 [events/se c] with 90% confidence level
GWDAW10@UTB, Texas 2005 Dec. 13
Time scale veto
C.Q.G. 20 (2003) S697-S709
This test is based on
♣
C1 
A1
A0
♣
C2 
A2
A12
 2 distribution of the filer output.
Stability of the noise level
1
Gaussianity
A0 : Averaged filter output A for a long time
1 i0  K
1 i0  K
A1 
Ai , A2 
( Ai ) 2


K i i
K i i
0
Ai : ith filter output val ue
0
GWDAW10@UTB, Texas 2005 Dec. 13
Time scale veto
4X10-4
8X10-4
12X10-4
16X10-4
example
y  exp( t 2 /  2 )
long
  0.4, 0.8, 1.2, 1.6 (msec )
Time scale
0
103
Amplitude
102
C1
101
100
0
long
Time scale small
100
C2
small
200
GWDAW10@UTB, Texas 2005 Dec. 13
5
msec
10
Time scale veto
Longest time scale signal
103
102
K  1.64 104 ( 0.82 sec)
C1
101
100
0
200
400
600
C2
GWDAW10@UTB, Texas 2005 Dec. 13
Detection efficiency
1
Injected signals
A&A 393 523 (2002)
0.8
0.6
26 signals
0.4
0.2
 (hrss )  1
10-19
10-18
10-17
10-16
hrss
10-15
10-14
GWDAW10@UTB, Texas 2005 Dec. 13
(1  (hrss / h50 ) (1  tanh(hrss / h50 )) )
Result
 Rate [events/day] with confidence level 90%
5
TypeI
TypeII
TypeIII
4
3
2
R(hrss ) 
1
0
10-18
10-17
10-16
10-15
hrss
hrss  110 16
0.51[events/da y]
 (hrss )
type1 0.53 events/day
0.62 events/day
Type2,3 0.73 events/day
GWDAW10@UTB, Texas 2005 Dec. 13
Source-distribution model
 ( R,  , z )  exp (
Astron.Journal 125 1958 (2003) sky-survey observation
| R  R|
R0
R0  3.5kpc : Radial scale length of the Galactic disk

| z  z |
) h0  320pc : Vertical scale height of stars in the disk
h0
(R , z )  (8500pc, 20pc) : Position of the Sun
10-4
1.25 105
10-5
10-6
20
42
100
Athre
500
6.8 103 [events/se c] with 90% confidence level
GWDAW10@UTB, Texas 2005 Dec. 13
GWDAW10@UTB, Texas 2005 Dec. 13
Time scale veto
Reduction ratio by veto
1
time scale test
0.8
0.6
0.4
0.2
monitor veto
0
102
Ath
103
GWDAW10@UTB, Texas 2005 Dec. 13
104
Detection efficiency
 Monte Carlo simulation of 26signals
1
0.8
Injected signals
26 kinds signals
A&A 393 523 (2002)
0.6 Threshold Ath  3.73 105
0.4
0.2
0
10-19
10-18
10-17
10-16
hrss
10-15
10-14
Type I Regular collapse
Type II Multiple bounce collapse
Type III Rapid collapse
TypeIII
TypeI
X 10-19
TypeI
TypeII
TypeIII
1
0
TypeII
-1
-2
10-18
hrss
10-16
0
10-14
GWDAW10@UTB, Texas 2005 Dec. 13
20
Time (msec)
40