Transcript Document

COLD BENDING RESEARCH NEEDS
Courtesy S. Kozel
UNIVERSITY OF BALAMAND
RESEARCH COUNCIL
JUNE 23rd, 2004
1
OUTLINE
• MOTIVATION
• PROPOSED METHOD
• PREVIOUS WORK
• CURRENT WORK
• FUTURE WORK
2
Cut Curving
Flange
Flange
Flange
Scrap
3
Fit-Up
Pressure Applied
During Fit-up
Pressure Applied
During Fit-up
Web
Flange
Flange
Fitting Jig
4
Problems ?
-
Costly because of excessive waste
- Too much scrap for sharp curvatures
- Used for mild curvatures (R  300m)
- Fit-up operation too complicated
5
Heat Curving
HEATED
AREA
Continuous
Intermittent V-Heating
6
7
8
Problems ?
- Trial and error process relying on uneven
expansion/contraction.
- Takes time to heat and much longer to cool
down.
- Results not known till AFTER cooling.
- If it is not right, process must be repeated.
- Ties up shop, slow and costly.
9
3-ROLLERS BENDING
PINCHING
ROLLER
Courtesy AISC
10
Bridges: Current Status ?
• Not allowed by AASHTO, concerns:
- Cracking, Fracture
- Flange Upsets
- Dimples
- Web Crippling
• No criteria is available
• Depends on skill and knowledge of fabricators
11
12
MIAMI METROMOVER PROJECT
13
1: Hydraulic jack (bot. flange)
TAMPA
2: Hydraulic jack (top flange)
3: Longitudinal arms
4: Steel plate
5: Clamps
TAMPA STEEL
STEEL
14
PROPOSED CONCEPT
L
1
2
3
3
2
4
5
6
7
5
max = 4
δmax
6
L2

8R
x
δ  δmax  R  R  x
2
2
15
FULL-SALE
FULL-SCALE
DEMODEMO
16
Top Flange
Bending
S
17
Bot Flange
Bending
1: Jack
2: Head
3: Plate
4: Angle
5: Support
6: String Line
7: Stiffener
5
7
1
4
3
2
6
18
FORMULATION
PARAMETERS:
- Load Frame Spacing S
- Bending Loads Ptf, Pbf
S
- Deflection  within span S
- Segment Length Li
- Number of Segments n
- Offsets
Li
Ptf
19
LOAD FRAME SPACING (S)
Based on lateral bracing limit:
E
S  1.76rt
Fy
S = 14.4c for Grade 250 steel
S = 12.2c for Grade 345 steel
For unsymmetrical sections use ctf
Flange
Width 2c
Load P
Comp. side
Flange
S = Lp
20
BENDING LOADS (Ptf, Pbf)
From simple beam plastic load analysis:
P
4Fy t f c
Top Flange: Ptf based on ttf, ctf
Bot. Flange: Pbf based on tbf, cbf
2
S
Constant
P
PS
Mp 
4
Fytfc
Fytfc
S
c
c
Mp = Fytfc2
21
DEFLECTION 
Δ
2
ctf  cbf
216Ec
Ptf  Pbf
13Fy S
tf  bf
Load P
set  = cte = tf
bf
   bf ???
Plastic
Hinge
tf
S
Set P = Pbf,
P  Pbf
Load in cycles
(not in this scope)
m=tf/bf
22
SEGMENT LENGTH Li
tf
4RΔ
Li 
S
[m-1] 
Constant
2
2Li/S
2Li
S
[m]

l

8R

2Li
S

[m+1]
2Li
Radius R
23
NUMBER OF SEGMENTS n
Length L
nLi
a
1
2
3
4
n n+1
5
a
Line of
symmetry
Round-down to
the nearest
even integer
L-S
n
Li
adjust
(L - S)
Li 
n
24
OFFSETS ii, ij
Load: 2
Load: 3
1
2
3
4
6
5
22
7
 i(i  1)

δ ii  4δ max  3 n  i  1
 n

23
33
24
34
Load: 4
44
Load: 5
 (i - 1) j n   j  1
 ij  δ ii  8δ max  2

n
n


ji 1

25
35
Load: 6
45
55
max
26
36
46
56
66
25
FABRICATION AIDS (LOADS)
Ptf =0.462.5152 = 260kN,Pbf =0.465252 = 1440kN
(kN/cm3)
P/tfc2
1.0
0.8
G 400
G 345
0.6
0.46kN/cm3
0.4
0.2
100
G 250
200
300
215cm
400
S (cm)
500
600
700
26
FABRICATION AIDS (Deformations)
tf = 3.5/15 = 0.23cm,bf = 3.5/25 = 0.14cm
60
G 400
c (cm2)
50
3.5cm2
G 345
40
G 250
Δ tf 0.23

 1.65
Δ bf 0.14
round-up
to 2
30
20
10
0
100
S (cm)
200
300
S = 215cm
400
S (m)
500
600
700
27
/(S2/c)105
FABRICATION AIDS (Multiple Load)
10
9
G 400
Bot. Flange load
8
G 345
G 250
7
Δ tf
(round  up)  2
Δ bf
= (tf – bf)=0.09cm
6
[/(S2/c)]105 = 4.9.
4.9 5
4
3
2
1
90
100
110
120
130
140
97
Px=975(25)2/215=1400kN
(m)
R/cS(cm/cm)
150
Px/tfc2/S
160 (kN/cm2)
28
FABRICATION AIDS (Segments)
1.50
1.25
Li/S cm/cm)
R 12000

 800
ctf
15
G 400
G 345
1.00
G 250
Li=0.25215=53.75cm
0.75
n=(1200–215)/53.75= 18.3
0.50
Round-down to n=18.
0.25
Li=(1200–215)/18= 55 cm
0.00
250
750
800
1250
1750
2250
S (m)
R/c
(cm/cm)
2750
3250
29
SUMMARY
- Development of a standardized cold curving
procedure.
- Relationships (loads vs. deformations),
Fabrication Aids are now available.
- Limits are set on maximum strains (plastic)
Note: Residual stresses may be released by
heat treatment
30
PUBLICATIONS
• Sen,R., Gergess,A. & Issa,C. “Finite Element Modeling of HeatCurved I-Girders” ASCE Journal of Bridge Eng, Vol. 8, No. 3,
May/June 2003,pp.153-161.
• Gergess A. & Sen R. (2003). “Simplified Heat-Curving
Analysis”. Journal of Transportation Research Board, No. 1861,
Construction, pp. 101 - 114
• Gergess, A. & Sen, R. “Inelastic Response of Simply Supported
I-Girders Subjected to Weak Axis Bending,” Proceedings of the
International Conference on Structural Engineering, Mechanics
and Computation, Cape Town, South Africa, Edited by
A.Zingoni, Vol. I, pp 243-250, 2001.
• Gergess, A. and Sen R. “Fabrication Aids for Cold Straightening
Structural Steel Girders”. AISC, Engineering Journal (in press),
2004.
• Gergess, A. and Sen R. “Cold Curving Un-symmetric Unstiffened Steel Girders, Journal of Constructional Steel
31
Research, London, UK (in press), 2004.
Current Work
• Theoretical
Investigation: 3D
Finite Element
Modeling
32
Current Work
Loading
Fy
STRESS
max  10 y
Strain
Hardening
Un-Loading
y
residual  8.5 y
STRAIN
33
Current Work
- Effects of Cold Bending on Steel mainly fracture
characteristics:
- Perform Visual
Inspection using
NDT Techniques
34
AASHTO Requirements
ASTM A709
ASTM A709
Grade 345
HPS 485W
Plate Thickness
up to 5 cm (2 in.)
up to 10 cm (4 in.)
Yield Strength
345 Mpa (50 ksi)
485 Mpa (70 ksi)
min. 404 MPa
620 – 758 MPa
(min. 58 ksi)
(90 – 110 ksi)
21%
19%
Toughness: CVN
35 m-N @ -12C
47 m-N @ -23C
Fracture Critical
(25 ft-lbf @ 10F)
(35 ft-lbf @ -10F)
Property
Tensile Strength
Min. Elongation
5 cm (2 in.)
Zone 3
 6.35 cm (TO 2.5 in.)  6.35 cm (TO 4in.)
35
ASSESSMENTS
36
37
Acknowledgments
• Samuel & Julia Flom Fellowship: USF
• Dr. Rajan Sen
• Ronald Medlock, Texas DOT “Performance and
Effect of Hole Punching and Cold Bending on Steel Bridges”.
Research project conducted by University of Texas at Austin and
Texas A&M University, 2003.
• TRB/AASHTO/NSBA
38
39