Plane Strain Extrusion – Slip-line Field Solution vs. FEM
Download
Report
Transcript Plane Strain Extrusion – Slip-line Field Solution vs. FEM
Plane Strain Extrusion –
Slip-line Field Solution vs.
FEM Solution
Nanshu Lu
ES 246 Plasticity Project
Jan. 11, 2006
Outline
Metal Forming – Extrusion
Slip-line Field Solution
Unsymmetrical Extrusion
FEM Solution
Conclusions
Metal Forming – Extrusion
Extrusion: Metal
forming process
whereby the workpiece
is placed in a chamber
with an opening and is
forced to escape
through the opening,
usually being pushed
out by a mandrel.
Extrusion (a) and an assortment of extrudates (b)
Metal Forming, Betzalel Avitzur, Lehigh University
Slip-line Field Solution
CDE
k
11 p1 k sin 30 p1 2
k
15 22 p1 k sin 30 p1
2
3k
12 k cos 30
2
Fan CAD
11 p2 k sin 2
22 p2 k sin 2
k cos 2
12
p0 2k p1 2k const
4
12
p1 k 1
3
22 p1
P 2 H 22
k
1
k
2
3 2
1
2k H
3 2
F
E
C
D
x1
ABC
11 p0 k
45 22 p0 k 0 p0 k
0
12
A
x2
Hill R. (1948)
B
G
H
Unsymmetrical Extrusion
Green A.P. (1955)
Fractional Reduction
D 2d
r
D
Eccentricity
bc
bc
Unsymmetrical Extrusion
Rough container walls
p
1
1
1.33log
2k
2
1 r
r1
r 1
p
1 r
r2
r 1
1 r
1
p1 p2 r p1 p2
2
Smooth container walls
p
1
0.13 r 1 r 1.33log
2k
1 r
FEM Solution – Modeling Skills
Stress-Strain Curve
Part:
Billet – 2D deformable shell
Ram – 2D analytical rigid body
Property
Material – steel
450
400
350
Stress σ (MPa)
y 400MPa
300
250
200
150
100
50
0
0
0.2
Elastic – 2000GPa, v=0.3
Plastic – Yield Stress = 400MPa, perfectly plastic
Material Orientation – local coordinate system
Assembly
0.1
Billet – punch contact
0.3
Strain ε
0.4
0.5
0.6
FEM Solution – Modeling Skills
Step
“Move ram” after initial step
Maximum number of increments = 1000
Initial Increment = 0.0001
Minimum time increment = 1e-6
Nonlinear geometry
Output request
History output – reaction force on the ram reference
point
DOF monitor – monitor the horizontal displacement of
the ram reference point
FEM Solution – Modeling Skills
Interaction
Frictionless surface-to-surface contact between
billet and the ram at initial step
Load
Boundary Condition
Symmetric boundary condition
Displacement constraints
Imposed displacement to the ram (=0.05m)
FEM Solution – Modeling Skills
Mesh
Structured CPE4R elements
Global seed size 0.002m
Job
Monitor
FEM Solution – Deformed Shape
FEM Solution – Animation
FEM Solution – Reaction Force History
FEM Solution – P~H Relation
H (m)
0
0.2
0.4
0.6
0.8
1
P/k
0.0000
0.6187
1.2373
1.8560
2.4747
3.0933
Pmax (N)
0
75.6
154.2
217.9
308.4
377.5
Cal-P/k
0.0000
0.6547
1.3354
1.8871
2.6708
3.2692
Extrusion Force ~ Billet Width Relation
3.5000
3.0000
1
4H 0.13 r 1 r 1.33log
1 r
2.5000
1
2H
3 2
P/k
2.0000
1.5000
1.0000
0.5000
r=0.5,
y 400MPa
0.0000
0
0.1
0.2
0.3
0.4
0.5
H (m)
0.6
0.7
0.8
0.9
1
FEM Solution – P~k Relation
σy (MPa)
360
380
400
420
440
P/(2H) (MPa)
321.6
339.4
357.3
375.2
393.0
Pmax (N)
68.8
72.2
75.6
78.9
82.2
Cal-P/(2H)
344
361
378
394.5
411
Extrusion Force ~ Yeild Stress Relation
420.0
410.0
400.0
P/(2H)(MPa)
390.0
380.0
370.0
360.0
1
k
3 2
350.0
340.0
330.0
H=0.2m
320.0
360
370
380
410
400
390
Yield Stress (MPa)
420
430
440
FEM Solution – Unsymmetrical Extrusion
ε
0
0.2
0.4
0.6
Δp/k
0.0000
0.0300
0.1300
0.2950
P (N)
204.8
206.6
211.3
218.6
Cal- Δp/k
0.0000
0.0390
0.1407
0.2988
Increase in extrusion pressure due to eccentricity
0.4000
0.3500
0.3000
Δp/k
0.2500
0.2000
0.1500
0.1000
0.0500
r=0.8
0.0000
0
0.1
0.2
0.3
Eccentricity ε
0.4
0.5
0.6
Conclusion
Slip-line field method gives good solutions for
metal-forming process
ABAQUS/CAE v6.5 is able to calculate perfectlyplastic material
Adaptive meshing is needed to simulate metalforming process accurately
Thermal contact interaction should be included
further
Acknowledgement
Joost Vlassak
Jennifer Furstenau
Xuanhe Zhao