Transcript Slide 1
Conjunct COST B27 and SAN Scientific Meeting, Swansea, UK, 16-18 September 2006 BRAIN-RATE AS A COMPLEMENTARY DIAGNOSTIC INDICATOR AND BIOFEEDBACK PARAMETER Nada Pop-Jordanova, MD, DSc (1) and Jordan Pop-Jordanov, DSc (2) (1) Faculty of Medicine, University of Skopje, Macedonia (2) Macedonian Academy of Sciences and Arts N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 Contents: 1.Empirical EEG-arousal correlation 2.Theoretical consideration 3.Brain-rate as arousal indicator 4.Some clinical results 5.Conclusions N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 1. Empirical EEG–arousal correlation 1.1 Textbook classification of EEG activity and the level of arousal (Pritchard, Alloway, 1999) Classification Beta waves Frequency 14−30 Hz Alpha waves 8−14 Hz Theta waves 4−8 Hz Delta waves 0.5−4 Hz Level of Arousal Alert, eyes open Quiet waking, eyes closed Drowsy, sleep stages 1 and 2 Deep sleep, stages 3 and 4 N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 3 1.2 Extended classification of EEG activity and the mental states (Bendorfer, 2001) Brainwaves Gamma High Beta Mid Beta SMR Alpha Theta Delta Frequency (Hz) (35Hz+): (22−35 Hz): (15−20 Hz): (12−15 Hz): (8−12 Hz): (4−7 Hz): (0.5−3 Hz): States association with peak performance high correlation with anxiety active, external attention relaxed state, body stillness relaxed, passive attention very relaxed, inwardly focused sleep, deep mediation N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 4 1.3 Clinical EEG-arousal correlation Slow waves – Underarousal (depression, autism, etc.) Fast waves – Overarousal (caffeine, anxiety, alcoholism, etc.) “Mixed”: Slow or fast waves – UA or OA (ADHD, OCD, headache, etc.) → subgroups (clusters) N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 5 1.4 From “how” to “why” questions Why is the arousal correlated with EEG frequency? Why in this pattern? Why in this frequency interval? Why alpha band corresponds to “relaxed” state? N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 6 2. Theoretical consideration 2.1 Basic mental-neural mechanism Hypotheses: Eccles (1986) - microsite probabilities Jibu and Yashue (1995) - photon-corticon dynamics Penrose/Hameroff (1998) - microtubular proteins Romijn (2002) - virtual photons N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 7 General scheme Synaptic activity activity e/m fields mental Solutions: conceptual, lacking analytical expressions and numerical results. Common elements: electric field and dipole molecules on nano level (nanomedicine). N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 8 Basic “nanometric” scale New domain BMBS includes nanomedicine N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 9 2.2 Field – dipole interaction J. Pop-Jordanov, E. Solov’ev, N. Pop-Jordanova, N. Markovska, D. Dimitrovski (1998) D. Dimitrovski, J. Pop-Jordanov, N. PopJordanova, E. Solov’ev (2004) Analytical solution for transition probabilities: Pab e 2Cab N Pab ( f ) N = 1012 dipole molecules per neuron N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 10 2.3 Transition probabilities and mental arousal J. Pop-Jordanov and N. Pop-Jordanova (2004) Readiness to change the state → mental arousal (alertness) Pab A e fe ln 2 f fe f 2 (S = Smax for f = fe) A = is capacity, not entity! N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 11 2.4 A = A (f) empirical results Arousal 1 0.9 Peak perf. Anxiety 0.8 Alert 0.7 Still 0.6 Relax 0.5 0.4 Drowsy 0.3 0.2 Deep sleep 0.1 0 1 Delta 4 8 Theta 12 10 16 20 SMR Mid High Beta Beta Alpha 30 50 Gama 100 Frequency [Hz] EEG activity and the mental states i.e. arousal (adapted from Tables 1.1&1.2). N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 12 A (f ) 2.5 A = A (f) theoretical formula 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 ch ad 1 10 100 f [Hz] Derived theoretical diagram for mental arousal ch – children (fe = 6 Hz), ad – adults (fe = 10 Hz) N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 13 1.4 From “how” to “why” questions Why is the arousal correlated with EEG frequency? Why in this pattern? Why in this frequency interval? Why alpha band corresponds to “relaxed” state? N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 14 3. Brain-rate as arousal indicator 3.1 Definition of arousal - General activation of the mind (Kahnemann 1973) - General operation of consciousness (Thacher and John 1978) - General drive state of the brain and mind (Watkins 1997) - Simple increases in activity, lying at the bottom of homeostasis (Damasio 2003) N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 15 3.2 Integrality of arousal and EEG spectrum By definition arousal is a general, integral characteristic of mental state. Simultaneously, it is correlated with the integral (polyrhythmic, polychromatic) EEG spectrum. The main characteristic of such a spectrum is its mean frequency weighted over the whole spectrum. We named it brain-rate (fb). N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 16 3.3 Brain-rate formula N. Pop-Jordanova and J. Pop-Jordanov (2005) , Vi f b f i Pi f i V i i , V Vi i or 1 fb V fV f df , V V f df N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 17 Analogies: Ai Xc Xi X i Pi A i i 2 T Ei Pi 3k i r i Pi N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 18 3.4 Spectral gravity and the state of a system The parameter characterizing the state and the changes (shifts) of any system with spectral properties is the spectrum gravity (Xc, T, σr, …), i.e. the mean value which comprises weighted contributions of all spectral components (bands). So e.g. the state transition (solid ↔ liquid ↔ gas) depends on the integral parameter T, the stability of a boat – on the center of gravity Xc, the criticality of a reactor cell - on the mean reaction rate, etc. N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 19 Based on the presented theoretical results and empirical evidence we suppose that the same principle is applicable for the arousal level correlated to EEG spectrum gravity fb. Consequently, the brain-rate fb can indicate the states of underarousal or overarousal, in the same way as the other mentioned indicators (Xc, T, σr, …) differentiate the levels of activation of corresponding systems. N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 20 4. Some clinical results 4.1 NF training of ADHD children N. Pop-Jordanova (2006) Parameter Beta brain waves Before NF (µV) After NF (µV) 4.86 ± 1.6 8.0 ± 1.38 t-test Significance 5.23 p<0.01 15.29 ±1.38 8.47 p<0.01 Theta Brain waves 20.95 ± 1.38 Theta/beta 4.7 ± 1.38 2.0 ± 1.6 4.5 p<0.01 Brain-rate 7.86 ± 0.56 8.22 ± 0.63 6.6 p<0.01 N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 21 4.2 Brain-rate as indicator of inner arousal Anxiety PTSD Panic attack Anxiety Stuttering OCD Ticks ADHD Pavor nocturnus N Mean age EC EO 2 1 4 8 1 2 3 22 2 45 12 13.5 14.6 11 14.5 12.5 9 7.5 10.54 7.54 8.21 8.19 8.50 8.28 8.47 7.60 8.13 8.56 6.27 7.58 7.57 8.27 8.25 8.48 7.86 8.48 N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 22 4.3 Blood lead level and brain-rate Characteristic correlations IQ (Pb) r = – 0.24 ( Pb) ( IQ ) r = 0.25 r = – 0.31 fb ( Pb) fb ( Pb) r = 0.08 r = – 0.12 fb r =0.30 N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 23 Scatterplot: 2/$ vs. fb [Hz] (Casewise MD deletion) fb [Hz] = 7,2468 + ,18796 *2/$ Correlation: r = ,29545 9.4 9.2 9.0 8.8 8.6 fb [Hz] 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 1.5 2.0 2.5 3.0 3.5 4.0 2/β 4.5 5.0 5.5 6.0 6.5 95% confidence N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 24 4.4 Brain-rate and reference databases Theta-beta ratio Brain-rate NeuroRep 1.49 9.73 SKIL 1.70 8.51 EureKa3! 1.46 8.94 Calculated using the spectral data from White 2003 for ten adults with ADHD (NeuroRep: Hudspeth 1999; SKIL: Sterman & Kaiser 2000; EureKa3!: Congedo 2002) N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 25 Being in the range of low alpha, the results for fb suggest that in this case ADHD Cluster 3 (Müller 2006) prevails. This is not visible from the /β ratio. Consequently, the “internally directed attention” (Cooper, Croft, Dominey, Burgess, & Gruzelier, 2003) can be considered as a characteristic of psycho-dynamical equilibrium (i.e. max entropy of an isolated system), as well. N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 26 5. Conclusions 1. Brain-rate can be considered as an integral brain state attribute, correlated to its electric, mental and metabolic activity. 2. In preliminary assessment, brain-rate may serve as an indicator of general mental arousal level, similar to heart-rate, blood pressure and temperature as standard indicators of general bodily activation. N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 27 3. By comparing EC and EO brain-rate values the diagnoses of inner arousal can simply be achieved. 4. As a measure of arousal level, brain-rate can be applied to discriminate between subgroups (clusters) of “mixed” disorders (e.g. ADHD, OCD, headache). N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 28 5. Brain-rate can be used as a multiband biofeedback parameter in mediating the underarousal or overarousal states, complementary to few-band parameters and the skin conduction. 6. Brain-rate training is especially suitable to reveal the patterns of sensitivity/rigidity of EEG spectrum and its frequency bands, related to permeability of corresponding neuronal circuits. Based on this information, individually adapted NF protocols can be elaborated. N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 29 7. It is recommended to include the brain-rate values in the standard EEG and NF software's and databases, along with the frequency band values. 8. Further studies of advantages and limitations of brain rate concept for diagnostics and treatment are needed. N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 30 References: Bendorfer, K. (2001). Alpha-Theta Neurofeedback: Its Promises & Challenges, BFE 5th Annual Meeting, Prien. Congedo, M. (2002) EureKa! (Version 3.0) [Computer software]. Knoxville, TN: NovaTech EEG, Inc. Cooper, N. R., Croft, R. J., Dominey, S. J., Burgess, A. P., & Gruzelier, J. H. (2003). Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses. International Journal of Psychophysiology, 47 (1), 65-74. Damasio, A. (2003). Looking for Spinoza: Joy, sorrow, and the Feeling Brain, Harcourt, Inc., Orlando … London, p. 30. N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 31 Dimitrovski, D. J., Pop-Jordanov, J., Pop-Jordanova, N., Solov’ev, E. (2004). Hidden-crossing transitions between collective states of coupled quantum rotators as a possible mechanism of memory processing, Information sciences: An International Journal, Volume 168, Issues 1-4, pp. 267-276. Eccles, J. C. (1986). Do mental events cause neural events analogously to the probability fields of quantum mechanics?. Proc. R. Soc. Lond., B, 227, pp. 411-28. Hameroff, S. R. (1998). Quantum computation in brain microtubules? The Penrose-Hameroff ‘Orch OR’model of consciousness, Philosophical Transactions: Mathemati-cal, Physical and Engineering Sciences, Volume 356, Number 1743, pp. 1869-1896. Hudspeth, W.J. (1996). NeuroRep: The QEEG analysis and report system-User’s guide (Version 4.0). Reno, Nevada: Gray Matter, Inc. Jibu, M., Yasue, K. (1995). Quantum Brain Dynamics and Consciousness, John Benjamins Publishing Company, Amsterdam/ Philadelphia. N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 32 Kahnemann, D. (1973). Attention and effort. Prentice-Hall, New Jersey. Müller, A. (2006). Neurobiological Diagnostics and Therapy in ADHD, in: News in Pediatrics, University of Skopje. Noland White, J. (2003). Comparison of EEG Reference Databases in Basic Signal Analysis and in Evaluation of Adult ADHD, Journal of Neurotherapy, Vol. 7, No. 3/4, p. 161. Pop-Jordanov, J., Pop-Jordanova, N. (2004). Quantum Interpretation of Mental Arousal Spectra, Contributions, Sec. Math. Tech. Sci., XXV, 1-2, pp. 75-94. Pop-Jordanov, J., Solov'ev, E. N., Pop-Jordanova, N., Markovska, N., Dimitrovski, D. (1998). Exploring the quantum concept of memory, International Journal of Psychophysiology, Vol. 30, No. 1-2, p. 147-148. Pop-Jordanova, N., Pop-Jordanov, J. (2005) Spectrum-weighted EEG Frequency (“Brain Rate”) as a Quantitative Indicator of Mental Arousal, Contributions, Sec.Biol.Med.Sci., MASA, XXVI 2, p. 71-80. N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 33 Pop-Jordanova, N. (2006) Biofeedback modalities for children and adolescents, Chapter in: New research on Biofeedback (editor Frank Columbus), Nova Biomedical Books. Pritchard, T. C., Alloway, K. D. (1999). Medical Neuroscience, Frence Greek Publishing, LLC, Madison, Connecticut, p. 397. Romijn, H. (2002). Are Virtual Photons the Elementary Carriers of Consciousness?, Journal of Consciousness Studies, 9, No. 1,, pp. 61-81. Sterman, M. B., & Kaiser, D. A. (2000). SKIL QEEG analysis software Version 2.05) [Computer software]. Bel Air, CA: Sterman-Kaiser Imaging Laboratory. Thacher, R. W. and John, E. R. (1977). Functional Neuroscience: Foundations of Cognitive Processing, Hillsdale, NJ: Erlbaum. Watkins (ed.), A. (1997). Mind-body Medicine: A Clinical Guide to Psychoneuroimunology, Churchill Livingstone, New York..Tokyo, p. 43. N. Pop-Jordanova, J. Pop-Jordanov, COST/SAN, Swansea, UK, 2006 34