How does your data centre work?

Download Report

Transcript How does your data centre work?

Business Drivers
- Why Do We Care How Green Our Data Centre’s Are?
● Public perception and Client brand consciousness
● Provide visibility to the firm’s environmental footprint
● Looming government regulation
● Seeking greenness through greater efficiency often has a byproduct of lower
costs of operation
● Corporate public responsibility
● Potential mitigation of continuously increasing energy costs and consumption
demand
● Current public and media focus on all things green
● Timeliness given pending strategic DC decisions
● It is just the right thing to do
2
Business Drivers
- Key Challenges to Green Data centre's
● Managing the potential trade off of between resilience with efficiency
and green features
● Up front cost premiums (recoverable and unrecoverable)
● Difficulty in retrofitting existing plants and operations
● Physical and geographic constraints to adopting some technologies
● Limited change control of non-owned facilities
● Human factors, resistance to change, habits
● Impact/benefit measurement can prove difficult
3
Green DC Review Approach
- Methodology
Purpose

To evaluate the eco-friendliness and efficiency of the firm’s data centre’s relative to each other and the industry and
identify opportunities for improvement.
Approach

A matrix of about 100 green design, operation qualities and performance quantities was created. The categories were
broken down into:

Construction Materials

Disposal and Recycling

Direct Operating Impact/Footprint

IT Production and Operations

Power Conversion Chain

Heat Removal

Controls and Management

Distributed Energy

To capture data, facility engineers and plant operators in all three global regions were solicited for performance
metrics, design qualities and operational details.

Analysis was performed to establish a snap shot of the efficiency and energy footprint of the Data Centres

The focus is on facilities only.
Note: IT production and operational practice varied greatly and it would not be possible to capture accurate uniform
metrics on the green IT practices identified or quantify the efficiency of IT equipment in production.
4
Data Centre’s
– Why So Much Focus on Electricity?
● A Data Centre is a big box that converts electricity into business process while
producing waste heat
Da
ty
ci
tri
ta
ec
 Heat is electricity’s main byproduct
after performing useful work
El
 For Data Centre operation, electricity
has by far the largest direct
environmental impact
 It takes large amounts of energy to
remove this heat from the facility
 Improved Data Centre electricity and
heat management are the most
significant ways to have a positive
impact on the environment
Data Centre
T
A
HE
Bu
s
Pro iness
ce s
s
5
Data centre's
– Why So Much Focus on Electricity?

Increasing electrical efficiency or reducing electricity consumption can have several positive effects:

Lower per server and overall DC TCO

Lower mechanical and cooling overhead requirements (due to less heat)

Surplus power may be repurposed for additional IT capacity

This graph shows Client’s projected IT power
demand growth by region over the next 15
years.

Reducing consumption or getting more IT
work out of each unit of electricity helps lower
IT unit costs

Power and space are the two most precious
commodities in Data centre planning.
Exhaustion of either may limit business
expansion at a site

The EPA estimates that over 1.5% of US
electricity is now consumed by Data centre's.
While energy cost continue to climb, that
figure is expected to double by 2011
IT Power
Demand In
15 Years
77.85
mW
IT Power
Demand
Today
12.23
mW
6
Measuring Efficiency
– Efficiency Losses
● In optimizing Data centre efficiency, the goal is maximizing the amount of IT work produced by the least
amount of resources possible
● There are currently no universally accepted metrics for measuring Data centre facility efficiency.
● Few effective metrics to measure the efficiency/business utility of the IT devices running in the plant (flops?
MIPS? CPU utilization? Business utility delivered?)
● Inefficiencies and natural loss occurs when energy travels great distances or changes from one form to
another. The diagram below illustrates some expected loss points between the source of power generation
and the IT equipment.
* PUE in this example is 2.5
7
Measuring Efficiency
– PUE / Power Usage Effectiveness
● The PUE (Power Usage Effectiveness) is a simple ratio gaining popularity for measuring facility
efficiency. It compares total electrical power in to power delivered to IT equipment. The PUE reveals
the overhead to get power to IT kit and cool the plant
● The formula for PUE is “Total Facility Power” in to the site divided by the amount power actually used
by the “IT Equipment Load” measured off the PDUs or UPS
● A PUE of 1 would indicate that all of the power to the site is going to power IT kit. Current industry
average PUE for a well designed Data centre is estimated to be about 2* where approximately half of
the power for a facility is required for non-IT facility overhead
● The lowest practical PUE is about 1.5 – 1.6 for a very well designed data centre using grid electricity
● Some firms are beginning to use the PUE as a benchmark to quantify efficiency gains from changes in
the plant
● The inverse of the PUE is called DCE (Data centre Efficiency) which is “IT Equipment Load” divided by
“Total Facility Load”
* Source: Intel presentation on DC efficiency
8
PUE
- Explained Graphically
Power
Total Facility
Power
• Switchgear
• UPS
• Battery backup
• Etc.
Cooling
IT Load
IT Equipment
Power
• Chillers
• CRACs
• Etc.
• Servers
• Storage
• Telco Equipment
• Etc.
Building Load
(Demand From the Grid)
Total Facility
Power
Total Facility Power - Measured at or near the facility
utility’s meter(s) to accurately reflect the power entering
the datacenter. This should represent the total power (for
which the utility charges) consumed in the datacenter.
IT Equipment
Power
PUE =
DCE =
IT Equipment Power - Represents the total power
IT Equipment
Power
delivered to the compute equipment racks in the
datacenter. The most likely measurement point would be
at the output of the computer room power distribution
units (PDUs) or UPS.
Total Facility
Power
*Metric Source - The Green Grid
9
PUE
- Some Caveats When Analyzing the PUE
● The PUE number can be effected by the amount of IT kit on the UPS relative the mechanical and
electric plant size installed. Examples:
● A large site just built may only have a few servers running and consequently have a very high PUE
due to the overhead of MEP systems
● A site that is fully populated with IT kit to the maximum capacity of the UPS will have a relatively
lower PUE
● In non-dedicated Data centre facilities, it can be difficult to develop an accurate PUE number.
Examples:
● Multi-tenant or Co-lo facilities where power and UPS infrastructure is shared or not metered
separately for each tenant
● Multi-use facilities such as mixed office/trading/data centre facilities where segregation of data
centre load relative to other uses may be inaccurate.
● Caution should be used when comparing facilities to ensure the PUE assumptions are as close as
possible
● Notwithstanding the caveats above, the PUE is one of the better metrics we have today to compare
facility efficiency between sites and industry peers
10
Carbon Footprint
- Methodology
● Carbon Dioxide (CO2) emissions are widely viewed as being a significant contributor to global
climate change
● The carbon footprint is a measure of how many equivalent units of CO2 the firm’s Data centre's
operations indirectly expel into the atmosphere from the generation of energy consumed
● The Data centre estimated carbon footprint was determined by measuring the annual quantity of
electricity consumed by the Data centre sites and multiplying that by the known or estimated
carbon impact per kWh for that particular grid or region
● Only gross power to the site was used in the calculations. Power that was purchased from the
utility as pre-offset from “green sources” was not adjusted in the calculations
● Other factors that contribute to the overall carbon footprint such as employee behavior, the
consumption of materials or equipment and the movement of goods and people were not
included in the analysis
● For our purposes, references to “Carbon” imply Carbon Dioxide (CO2)
11
Carbon Footprint
- Impact
● Client’s estimated electricity carbon footprint for large Data centre facilities is
258 million pounds (117,093 metric tons) of CO2 annually*
● This current annual CO2 footprint is roughly equivalent to:

The amount of carbon released by a Mini Cooper driven around
circumference of the earth 21,513 times or to the moon 2408 times

The annual carbon footprint of about 6,296 average US households or
18,883 average UK households.

Just under three times the hull weight of the cruise ship Queen Mary 2*
 This does not include the carbon footprint from other aspects of the facility, technology or people
operations
 Also excluded from review are other greenhouse gasses (Methane, Nitrous Oxide) and other
harmful emissions such as Sulphur Dioxide and Mercury emitted from the production of electricity
 Without making changes to the current efficiency profile of the Data centre's, these number have
the potential to be 6 times larger by the end of 2015 based on projected power demands
 It is worth noting that the local source of power has a significant effect on carbon footprint.
Example: Japan utilizes larger percentages of nuclear and hydro power so the carbon footprint for
the power consumer is relatively low compared to other regions which may use larger amounts of
dirtier power generation such as coal
* Source: Cunard line Queen Mary 2 Fact Sheet
12
Correlating Efficiency and Carbon Footprint
- Technology Carbon Efficiency (TCE)Technology Carbon Efficiency (TCE)
Less
Green
Pounds of CO2 per 1kWh Delivered to IT Equipment
• The Technology Carbon
Efficiency (TCE) is a metric that
measures the carbon impact of 1
mWh delivered to IT equipment.
It is expressed in pounds CO2 per
1kWh. It is calculated by
multiplying the PUE by the
Carbon produced by the
electricity source per 1 mWh
• This TCE chart illustrates the
expected carbon impact per 1
kWh of power delivered to IT
equipment under various plant
efficiency (PUE) and local grid
carbon output levels (CO2
produced in generating the
electricity)
• We can see how operating from
low carbon emitting power
sources and/or with a more
efficient facility can have a
significant impact on the carbon
footprint
• Alternatively the carbon footprint
of an inefficient plant can be
somewhat offset if the source of
electricity produces less carbon
More
Green
* CO2 output rates from
Department of Energy
2000 CO2 by Source
Estimates Per kWh
Natural
Gas
1.321
Other
Fuels
US 1.378
Average
1.341
Petroleum
1.969
Coal
2.095
13
Carbon Footprint
- Offsets
● Offsetting carbon is the is the act of mitigating ("offsetting") greenhouse gas emissions. A wellknown example is the planting of trees or investing in clean energy to compensate for the
greenhouse gas emissions from personal air travel
● The market cost to offset the 258 million pounds of Carbon produced by the global Data centre sites
would be approximately $2,341,893 annually*. This assumes a good quality carbon credit from the
clean development mechanism under the Kyoto Protocol at $20 US/metric ton
● To equate this into trees, 258 million pounds of CO2 are accumulated annually by an old growth (50100 year old) forest that is 23 times the size of Manhattan (322,000 acres)**
● Planting trees is not an immediate solution. It takes 50-100 years for trees to accumulate
(store/contain) a meaningful amount of carbon from the atmosphere and the question of what
vegetation was displaced to plant new trees in the first comes up.
● One inherent problem with the global Carbon offsets market is that as a global market, offsets can
be generated and applied in different regions. This means that by the rules of the Kyoto Protocol,
you could offset carbon created in New York with offsets from the other side of the globe in Australia
● Offsetting carbon in the region it is created is optimal
● Critics of offsetting argue that using carbon offsets actually increases demand for polluting sources
of power since overall power consumption is not being reduced
•
* Based on 8760 hours per year and $20 US Dollars/Metric Ton or ($0.0090719404880704 per pound) for a good quality carbon credit from the clean development mechanism under the Kyoto Protocol.
•
** Based on 800 pounds/acre/year accumulated by a mature New York State Forest (Source USDA Technical Report W0-59
)
14
Carbon Footprint
- Offset Cost Estimates With Combinations of Efficiency and Source
Estimated Annual Cost to Offset - For Each 1 mW of IT Load
Note: Based on 8760 hours per year and $20 US Dollars/Metric Ton or ($0.0090719404880704 per pound) for a good quality carbon credit from the clean development mechanism under the Kyoto Protocol.
15
DC Design Element Classification
 Data centre design elements can generally be classified as for Resiliency, Green or for Efficiency.
 While Most efficiency design element are also green, few features benefit all three categories
simultaneously.
Resiliency
Features that enhance the reliability of the Plant to reduce
outage impact or downtime.
• Increasing reliance often decreases efficiency and
greenness
• As tier level goes up, footprint increases and
efficiency decreases
• Greenness and resilience rarely compliment each
other directly
High tier level with redundant systems
Water recovery systems?
Fuel cells?
Cogen power?
LED lighting
RESILIENT
Green
Variable speed fans
Lights out in the DC
Non-toxic construction materials
EFFICIENT
Recycling policy
Use of local resources
Small land footprint
Green habitat preservation
GREEN
DC
Design
Sweet
Spot
Features that are designed to reduce the environmental
impact of the plant.
• Reduced carbon and environmental footprint
• Decrease energy and resource input requirements
• Recycled/renewable materials
• Carbon footprint is only one measure of
environmental impact
Efficiency
Design features that increase the operational efficiency.
Amount of output from the plant for a given resource input
• Most efficiency features benefit overall greenness
• Can be calculated several ways for different systems
• Our primary energy efficiency measure will be ratio
of utility power in against UPS load delivered to
equipment.
16
Green IT Design Operation
- Best Green Practice

Green efficiency is not the sole domain of the facility designers and managers. IT professionals have a
responsibility to operate their equipment with efficiency as a priority. Several areas of IT efficiency consideration
have been captured. While some may be in practice within the firm, none are universal policy across technology:
17
Recommendations / Next Steps
– What we should do short-term
Conduct detailed cost/benefit analysis by site of the following efforts to improve efficiency and implement accordingly:
Lighting Power Conservation:
• Implement policy of lights out or light limited hours
• Evaluate optimized lighting such as LED
Improved Heat Removal Efficiency:
• Utilize air blocking plates and seal gaps – MER for North America being submitted for peer review 9/19*
• Adjust environmental conditions (heat set points and humidity settings) – in discussion with Intel Professional
services to evaluate
• Optimize data centre air flow configuration – in discussion with Intel to evaluate
• Utilize variable speed air-handler fans and chilled water pumps – in discussion with HP to evaluate
• Implement policy to regularly rebalance of air handler system after significant IT reconfiguration
• Configure redundancy to minimize impact on efficiency
• Regularly balance systems to eliminate of redundancies
Ongoing Management:
• Implement metrics and reporting for green/efficiency baseline (PUE/TCE/Carbon Footprint/Green Scorecard)
• Provide for standard reporting of power use and processor utilizations
Estimated efficiency gain for the above in NY DCs is between 3% - 10% annual electricity savings. 3% efficiency
gain would result in:
• Annual North American electricity savings of $687K (22,900,000 kWh at $0.15 / kWh)
• Annual carbon footprint reduction of 7.3 million pounds CO2
*$1 million initiative to optimize cooling efficiency to industry best practice in all 5 NY DCs
via use of blanking plates, cold locks, pillows and row end caps in all spaces. Work is expected to take 6 months with start date in October.
18
Recommendations / Next Steps
– What we should do Interim and long term
Interim
• Develop detailed cost/benefit analysis by site for major remediation areas not in progress globally (e.g. thermal efficiency optimization such as
Commissioning, CFD modeling and variable speed fans)
• Set targets for efficiency objectives and TCE reduction (based on short-term metrics and reporting)
• Extend evaluation of variable speed fan solutions, DC power, liquid cooling to the racks, air side cooling and other emerging
technologies beyond the North America Region
• Promote green change within IT through evaluation and adoption of identified green ‘best practice’ considerations (e.g., optimizing
software for greatest efficiency, optimizing operational elements such as utilization and power management features and hardware
optimization)
• Challenge vendors to consider efficiency and green when developing future products and incorporate efficiency into vendor
evaluation criteria
• Publicly promote (through press releases and/or sponsorship) Firm green-consciousness activities as an essential component of
Firm principles and industry best practice
Long Term (New DC capacity)
• Investigate varied tier level offerings consistent with business requirements to reduce inefficiencies associated with higher levels of
resiliency
• Incorporate evaluation of green/efficient power sources (including source carbon impact) into DC location/site selection and
evaluate workload portability to leverage out of region, cleaner power locations
• Incorporate identified green construction and efficiency features into future sites, (e.g., NA DCs, Tokyo DC HK DC B)
• Set PUE targets as part of design requirements for new DCs
• Where co-lo facilities are a necessity, incorporate efficiency and green elements such as green construction, PUE and TCE as part
of the vendor/site selection criteria
• Investigate alternate power sources, combined heat and power systems and co-generation
including micro-turbines, solar and fuel cell technology
19
Conclusion
● Limited opportunities for some types of change in existing sites as they were constructed primarily for resilience with
limited consideration towards efficiency
● Greatest efficiency gains will come from practicing green construction and incorporating efficient green considerations
into future sites
● Multiple tier level offering where tier meets minimum business requirements and not carry the inefficient overhead of
redundant systems or operate in a more green efficient out-of region location
● Make green and site selection a consideration in future design and site selection
● Significant opportunities exist for green change on the IT side by implementing green best practice considerations in the
way technology is deployed and operated
● Is it more economical to offset carbon or retrofit the plant for efficiency? The answer would need to take obtainable
change, power costs and cost of remediation into consideration on a case by case basis
● The main problem with offsetting is it does not reduce the demand for polluting sources of power since overall power
consumption is not being reduced
20
Appendix
- Details of Green Criteria
21
Appendix
- Details of Green Criteria
22
Appendix
- Details of Green Criteria
23
Appendix
- Details of Green Criteria
24
Appendix
- Details of Green Criteria
25
Appendix
- Details of Green Criteria
26
Appendix
- Annual Power Costs per 1mW of IT Load
27
Appendix
- Tier Levels Explained
Tier I
Non-redundant capacity components and
single non-redundant path distribution
paths serving the site’s computer
equipment
Tier II
Redundant capacity components and
single non-redundant distribution paths
serving the site’s computer equipment.
Source: Uptime Institute White Paper “Tier Classifications Define Site Infrastructure Performance”
28
Appendix
- Tier Levels Explained
Tier III
A concurrently maintainable data centre has redundant
capacity components and multiple distribution paths serving
the site’s computer equipment. Generally, only one
distribution path serves the computer equipment at a time
Tier IV
A fault tolerant data centre has redundant capacity systems
and multiple distribution paths simultaneously serving the
site’s computer equipment.
All IT equipment is dual powered and installed properly to be
compatible with the topology of the Site’s architecture.
Source: Uptime Institute White Paper “Tier Classifications Define Site Infrastructure Performance”
29