Transcript Document
Stereoselective Routes to Aziridines Nate Bowling McMahon Group University of Wisconsin-Madison Sept. 12, 2002 Summary • Applications – Uses for Optically Active Aziridines • Addition of Nitrogen to Alkenes – Nitrenes – Atkinson-type Aziridinating Agents – Asymmetric Aziridination Catalysis • Aziridinations using Already Existing Stereocenters – Sharpless Asymmetric Epoxidation and Dihydroxylation – Amino Alcohols • Other Routes to Stereoselectivity – Imines – Michael Addition – Azirines • Resolution R5 N R3 R1 The Basics of Aziridines R4 R2 • Ring Strain (SE) of 26.7 kcal/mol (R1-5 = H) – Oxirane = 26.3 kcal/mol – Cyclopropane = 27.5 kcal/mol • Inversion barrier of nitrogen (R1-5 = H) = 18.9 kcal/mol – Normal amines = 5- 6 kcal/mol • Usually only susceptible to ring opening by nuclephilic attack upon activation by: – Protonation – Quaternization – Lewis acid adduct – R5 = electron withdrawing substituent Tanner, D. Angew. Chem. Int. Ed. Engl. 1994, 33, 599-619. Nielsen, I. M. B. J. Phys. Chem. A 1998, 102, 3193-3201. Bach, R. D.; Dmitrenko, O. J. Org. Chem. 2002, 67, 3884-3896. Uses of Optically Active Aziridines Stereocontrolled Synthesis of Alpha and Beta Amino Acids Through Aziridines NucR2 N1 * 3 2* R1 C-3 attack Nuc * 1 R HNR2 * CO2R3 -amino acid CO2R3 NucC-2 attack (R2: electron-withdrawing group) R2NH * R1 Nuc * CO2R3 -amino acid Dubois, L.; Dodd, R. H. Tetrahedron 1993, 49, 901-910. Stereocontrolled Formation of β-Substituted Phenyl Amino Acids S H3CO Ph O OBzl NHBoc i) CH2Cl2, BF3.Et2O, p-MeOC6H5CH2SH, 67% ii) (Boc)2O, TEA/THF, 90% Ph O OBzl N H NH2 BF3.Et2O, indole, 48% CH2Cl2 O Ph HN OH O acetic acid, 70oC, 88% OBzl Ph H2, MeOH, 10% Pd-C, 90% O Ph OH NH2 Xiong, C.; Wang, W.; Cai, C.; Hruby, V. J. J. Org. Chem. 2002, 67, 1399-1402. OBzl NHAc Carbapenem Antibiotics Through a β-Lactam Ring Closing HO LiEt2Cu, Et2O, 80% N Ts OR Et RuCl3 (2 mol%) NaIO4 CCl4/CH3CN/H2O, RT, 82% NHTs OR O CO2H N H HO2C NHTs HO DCC, 4-pyrrolidino-pyridine (cat.) CH2Cl2, RT, 15 min, 83% R = SiPh2tBu Et OR Et RuCl3 (2 mol%) NaIO4 CCl4/CH3CN/H2O, RT, 82% OH i) Na-napthalene, DME, -78°C, 85% Et ii) HCl, MeOH, RT, 91% Et O R1 N H H Me O O N S NHR2 COOH Thienamycin PS-5 R1 = OH R2 = H R1 = H R2 = Ac Tanner, D.; Somfai, P. Tetrahedron 1988, 44, 619-624. OR N Ts Proposed Mode of Action of Mitomycin C O CH2OC(O)NH2 H2N OCH3 N H3C N H Enz Redn OH N - MeOH OH DNA CH2OC(O)NH2 O H3C OH N H3C N CH2OC(O)NH2 H2N DNA NH2 N H OH H2N N CH2OC(O)NH2 N H3C OH H2N OH N H H H2N OCH3 H3C OH H3C CH2OC(O)NH2 H2N O O NH2 Na, Y.; Wang, S.; Kohn, H. J. Am. Chem. Soc. 2002, 124, 4666-4677. OH NH2 Asymmetric Dihydroxylation with Aziridines Ph Ligand = Ph N N Ph Ph OH OsO4, Ligand Toluene, -78oC OH Yield = 90% ee = 95% OH Ph Ph OsO4 OH ent-Ligand Ligand OH OsO4 OH Ph Ph Tanner, D.; Harden, A.; Johansson, F.; Wyatt, P.; Andersson, P. G. Acta Chem. Scand. 1996, 50, 361-368. Nitrenes R N Nitrene Addition in Accordance with Skell’s Rule Singlet Nitrene Stereospecific Addiditon + R N + Triplet Nitrene R N H H3C H H3C R N R N CH3 H H CH3 Non-stereospecifc Addition + + H H3C H H3C R N R N CH3 H H CH3 + + H H3C H H3C R N R N McConaghy, J. S.; Lwowski, W. J. Am. Chem. Soc. 1967, 89, 2357-2364. H CH3 CH3 H Different Reaction Pathways of Singlet and Triplet Nitrenes EtO2CN3 h EtO2CN N CO2Et + A Mol % isoprene in CH2Cl2 Yield % Ratio A:B 100 95 2 1.17 0.05 30 86 3 1.21 0.03 2.5 87 1 1.45 0.02 0.5 85 2 2.13 0.05 N CO2Et Mishra, A.; Rice, S. N.; Lwowski, W. J. Org. Chem. 1968, 33, 481-486. N CO2Et B α-Elimination, Irradiation, and Thermal Syntheses of Nitrenes O NsO O2N N H O NEt3 or CaO or K2CO3 R O S O = Ns h or O N3 N CO2R OR Fioravanti, S.; Loreto, M. A.; Pellacani, L.; Tardella, P. A. Tetrahedron Lett. 1993, 34, 4353-4354. Fioravanti, S.; Pellacani, L.; Stabile, S.; Tardella, P. A. Tetrahedron 1998, 54, 6169-6176. Bergmeier, S. C.; Stanchina, D. M. J. Org. Chem. 1997, 62, 4449-4456. McConaghy, J. S.; Lwowski, W. J. Am. Chem. Soc. 1967, 89, 2357-2364. Mishra, A.; Rice, S. N.; Lwowski, W. J. Org. Chem. 1968, 33, 481-486. Highly Diastereoselective Nitrene Addition PhO2S O N O Ph a O b yield (%) de (%) O CO2Ra NsONHCO2R CO2Ra CaO, CH2Cl2 91 99 90 99 92 97 90 98 N CO2Et O CO2Ra N CO2t-Bu O CO2Rb NsONHCO2R CaO, CH2Cl2 O CO2Rb N CO2Et O R = Et, t-Bu CO2Rb N CO2t-Bu Fioravanti, S.; Morreale, A.; Pellacani, L.; Tardella, P. A. J. Org. Chem. 2002, 67, 4972-4974. The Thermolysis of Several Different Species Gives One Common Nitrene H PhthalN N R PhthalN N SMe2 PhthalN N N NPhthal O N = Phthal O Atkinson, R. S.; Jones, D. W.; Kelly, B. J. J. Chem. Soc., Perkin Trans. 1 1991, 1344-1346. Atkinson-type Aziridinating Agents O O N O R N NH2 N NH2 N NH2 O O N NH2 N R N O NH2 Atkinson, R. S.; Rees, C. W. J. Chem. Soc. (C) 1969, 772-778. Anderson, D. J.; Gilchrist, T. L.; Horwell, D. C.; Rees, C. W. J. Chem. Soc. (C), 1970, 576-579. Oxidation of Atkinson-type Aziridinating Agents Gives Stereospecific Addition Stereospecific Addition NR2 NH2 Pb(OAc)4 NR2 N R1 R2 R3 R4 R1 R3 NR2 N R2 R4 Singlet stabilized by resonance N NR2 N NR2 Atkinson, R. S.; Rees, C. W. J. Chem. Soc. (C) 1969, 772-778. Anderson, D. J.; Gilchrist, T. L.; Horwell, D. C.; Rees, C. W. J. Chem. Soc. (C), 1970, 576579. Invertomers X N R H cis-invertomer R N X H trans-invertomer When X is electron withdrawing, the inversion barrier is decreased. When X is electron donating, the inversion barrier is increased. Atkinson, R. S.; Malpass, J. R. J. Chem. Soc., Perkin Trans. 1 1977, 2242-2249. Kinetic v. Thermodynamic Invertomer Formation O Pb(OAc)4, -20oC N NH2 + Phthal C6H5 O o CO2Me Pb(OAc)4, -20 C + H N H >0oC C6H5 H Phthal MeO2C N H H = O Top View O Phthal H N H MeO2C H Phthal LTA = Lead Tetraacetate H >0oC O N Phthal H N H O N N N N O O H Atkinson, R. S. Tetrahedron 1999, 55, 1519-1559. H Non-bonding Interactions O OCH3 O Pb(OAc)4 N NH2 O O N N O O O OCH3 N N O O Carbonyl-Carbonyl interactions O O O Pb(OAc)4 N NH2 N N O O O N N -stacking O N NH2 O O + O Pb(OAc)4 // Locked in s-trans conformation Atkinson, R. S.; Grimshire, M. J.; Kelly, B. J. Tetrahedron 1989, 45, 2875-2886. OCH3 Alternative Intermediate Me O N NH2 N • • • Oxidation with Pb(OAc)4 at –20oC, and subsequent examination by NMR spectroscopy at -30oC revealed no presence of aziridine, but amino protons had disappeared. Removal of Pb(OAc)4 from solution revealed the presence of a methyl singlet that had previously been overshadowed by the Pb(OAc)4 acetate signal. Surmised that the reacting intermediate may not be nitrene, but acetoxyamino group instead. O N OAc NH Me N Atkinson, R. S.; Grimshire, M. J.; Kelly, B. J. Tetrahedron 1989, 45, 2875-2886. Mechanistic Pathway from Proposed Intermediate Me Me O O Q H Q O N O Ph O H N H3CO O N Q= N R Atkinson, R. S.; Williams, P. J. J. Chem. Soc., Perkin Trans. 1 1996, 1951-1956. Support for the Proposed Mechanism H3C Et N H3C O Et O N N H O N + CO2Me H3C H3C Et O O Et H O N N H O N H H HO i O O O O MeO + H i Pr OH MeO2C Pr High diastereoselectivity Low diastereoselectivity Departure of Acetate facilitated by alchol Departure not facilitated by alcohol Atkinson, R. S.; Williams, P. J. J. Chem. Soc., Perkin Trans. 1 1996, 1951-1956. O N N H O N N H iPr O MeO N O HO iPr Stereochemical Control with the Aziridinating Agent Me N OSiMe2tBu N Ph + Ph H TMS NH2 O Q* N H TMS d.r. 11:1 Me N Q* = OSiMe2tBu N O Atkinson, R. S.; Coogan, M. P.; Lochrie, I. S. T. Tetrahedron Lett. 1996, 37, 5179-5182. Diastereoselectivity Using Oppolzer’s Auxiliary R1 O NH SO2 + R2 Cl R1 O R2 N SO2 R3 R3 O OAc N NH O O R1 O R2 O R1 Ti(OiPr)4 Xc N NPth R3 O R1 R2 + Xc N Phthal R3 R3 (major) R2 N Phthal (minor) R1 R2 R3 % Yield % de H H H 94 78 H Ph H 90 80 Kapron, J. T.; Santarsiero, B. D.; Vederas, J. C. J. Chem. Soc., Chem. Commun. 1993, 1074-1076. Asymmetric Aziridination Catalysts Catalytic Aziridination via Nitrenoid Intermediate L*Cu+ PF6R1 R3 PhI=NTs R2 N Ts R1 R3 PhI R2 [L*Cu=NTs]+ PF6 Nitrenoid intermediate allows for asymmetric aziridination under the influence of L* Li, Z.; Quan, R. W.; Jacobsen, E. N. J. Am. Chem. Soc. 1995, 117, 5889-5890. Jacobsen Asymmetric Aziridination Catalyst O Me Me + O PhI=NTs L*.CuPF6 25oC PhI + NC NC Me Me N Ts aziridine ee (%): 82-85 Cl H N H N Cl L* = Cl Cl Li, Z.; Quan, R. W.; Jacobsen, E. N. J. Am. Chem. Soc. 1995, 117, 5889-5890. Enantioselective Katsuki Aziridination Catalyst Ts + PhI=NTs catalyst (5 mol%), 4-phenylpyridine N-oxide substrate-CH2Cl2 (5:1) Me Me N N Mn O O Ph Ph AcO- Substrate Yield (%) % ee Styrene 76 94 p- chlorostyrene 70 86 p-methylstyrene 75 81 Nishikori, H.; Katsuki, T. Tetrahedron Lett. 1996, 37, 9245-9248. N Stereoselective Routes to Aziridines Using Sharpless Asymmetric Epoxidation and Asymmetric Dihydroxylation Catalysts Sharpless Asymmetric Epoxidation (-)-tartrate O OH R R OH N H OH AE R H N (+)-tartrate R (+)-tartrate OH O R O R OH R R OH OH OH N H AE (-)-tartrate H N R OH O Tanner, D. Angew. Chem. Int. Ed. Engl. 1994, 33, 599-619. R OH Epoxide to Aziridine via Staudinger reaction RO H NaN3 O RO H OH N3 RO + H N3 OH PPh3 CH3CN reflux RO H RO H RO H O PPh3 N H + H N PPh3 O RO H OH N PPh3 + RO H N PPh3 OH NH Sommerdijk, N. A. J. M.; Buynsters, P. J. J. A.; Akdemir, H.; Geurts, D. G.; Nolte, R. J. M.; Zwanenburg, B. J. Org. Chem. 1997, 62, 4955-4960. Epoxide to Aziridine via Aza-Payne Reaction O H Ph H N O Ts NH 5% aq. NaOH solution reflux 5 min HO H OH N i OH Ti(O- Pr)4 THF, 0oC 63% N Ts Ph OH Urabe, H.; Aoyama, Y.; Sato, F. Tetrahedron 1992, 48, 5639-5646. Moulines, J.; Charpentier, P.; Bats, J.-P.; Nuhrich, A.; Lamidey, A.-M. Tetrahedron Lett. 1992, 33, 487490. Retention of Epoxide Configuration O OH ArSNa R1 2 ArS R R1 HO + R2 R2 1 R SAr TsNH2, BF3.Et2O NHTs ArS Me R1 R2 TsHN + R2 1 R SAr Me TsHN NHTs Me3O+ BF4ArS R1 2 R + R2 1 R SAr NaH Ts N R1 R2 Toshimitsu, A.; Abe, H.; Hirosawa, C.; Tamao, K. J. Chem. Soc., Perkin Trans. 1 1994, 3465-3471. Sharpless Asymmetric Dihydroxylation AD-mix- HO OH R R' R R' HO OH SOCl2 O O S O O R R' R R' RuO4 O S O R' O 1) LiN3 R R' R R' R 2) LiAlH4 N H 1) LiN3 H N R' R AD-mix- SOCl2 RuO4 O S O O O O S O O Tanner, D. Angew. Chem. Int. Ed. Engl. 1994, 33, 599-619. 2) LiAlH4 R R' Different Pathways From Homochiral 1,2-Cyclic Sulfates OH R'' R' OH O 1) SOCl2 R' 2) RuO4 O S O R'' R" 1) LiAlH , THF, 4 N H 2) 20% KOH 80-88% R' NH2R O LiN3, THF R' RNH2 THF, R' OSO3R'' n-BuLi or LiAlH4, THF, or NaOH, 1) 20% H2SO4 2) NaOH OSO3-Li+ R'' N3 OH R'' R' NHR 74% R' R" N R 62-89% Lohray, B. B.; Gao, Y.; Sharpless, K. B. Tetrahedron Lett. 1989, 30, 2623-2626. Chiral Aziridines from Amino Alcohols Okawa’s Aziridination Procedure From Amino Alcohols H2C OH H2N C COOBzl H Tri-Cl H2C OH Tr N C COOBzl H H Ts-Cl Pyridine H2 C Tr N C COOBzl H Nakajima, K.; Takai, F.; Tanaka, T.; Okawa, K. Bull. Chem. Soc. Jpn. 1978, 51, 1577-1578. Mitsunobu Reaction: Amino-Alcohol to Aziridine R2 R2 H H R1 N C C OH R3 R4 DEAD, P(Ph)3 R1 N R3 R4 R1 R2 R3 R4 time/solvent Yield (%) C6H5CH2 H H CH3 2 h/ether 90 C6H5CH2 CH3 CH3 H 18 h/ether 89 Pfister, J. R. Synthesis 1984, 969-970. Preparation of Aziridines from the Mitsunobu Reaction of 1,2-Aminoalcohols O Bn O N H H N O O N H H OH H3C OH CH3 O H HN CH3 N N H H H O Bn O O H C OH 3 Ph3P, DIAD CH2Cl2, 0oC Bn O O N H N O H3C H N H H CH3 56% O Ph3P, DIAD THF, 0oC N Bn 84% O HN O O H3C H Wipf, P.; Miller, C. P. Tetrahedron Lett. 1992, 33, 6267-6270. N H H CH3 Stereoselective Formation of Aziridines from Imines General Mechanism of Aziridine Formation from Imines From alpha-halo enolates R" N M R" O OR R' N M R" O R' N OR O R' OR X X From sulfonium ylides R" R' R" N H C Ph SR2 R' R" N Ph SR2 N R' Ph High Diastereoselectivities From Sulfinimines in an Aza-Darzens Reaction X OR2 H OM H O p-Tolyl X = Br R2 = Me, t-Bu S N OMe Br CO2R2 H N H S p-Tolyl O CO2R2 H + R1 N H S p-Tolyl O Major R3 R1 R1 Ph R3 OLi 1 R = Ph H N CO2Me S p-Tolyl O Major (R3 = H) Ph + CO2Me H N R3 S p-Tolyl O R1 R3 R2 Conditions % de Yield (%) Ph H Me LiHMDS/78/2.5h 98 70 p-MeOPh H Me LiHMDS/78/2.5h 98 74 Davis, F. A.; Liu, H.; Zhou, P.; Fang, T.; Reddy, G. V.; Zhang, Y. J. Org. Chem. 1999, 64, 7559-7567. Rationale for Diastereoselectivity Ph Ph OMe Li OMe Li N Br O S H S Br O Ph CO2Me N H Ar Ph H S p-Tolyl Me O Ar O N Me N CO2Me S O p-Tolyl O Davis, F. A.; Liu, H.; Zhou, P.; Fang, T.; Reddy, G. V.; Zhang, Y. J. Org. Chem. 1999, 64, 7559-7567. Enantioselectivity Using the Imino Corey-Chaykovsky Reaction p-Tolyl OH 1 R CH2Br + R2CH=NR3 S R2 base, solvent R3 = Ts H H N H R1 R1 R2 Yield (%) trans:cis Trans ee(%) Ph Ph >99 75:25 92 P-NO2C6H4 Ph >99 65:35 98 Saito, T.; Sakairi, M.; Akiba, D. Tetrahedron Lett. 2001, 42, 5451-5454. Highly Diastereoselective Aziridination of Imines with Trimethylsilyldiazomethane N R2 + SiMe3 1,4-dioxane 40oC, 3-15h R2 = Ts N2 R1 R2 N R1 R1 Yield (%) cis:trans Ph 72 95:5 P-OMePh 65 100:0 SiMe3 Aggarwal, V. K.; Alonso, E.; Ferrara, M.; Spey, S. E. J. Org. Chem. 2002, 67, 2335-2344. Ring Closing Pathway N R2 SiMe3 + N2 R1 H N2 Me3Si N R1 ring closure R2 H H migration and protodesilylation R2 N R1 N SiMe3 R2 R1 Aggarwal, V. K.; Alonso, E.; Ferrara, M.; Spey, S. E. J. Org. Chem. 2002, 67, 2335-2344. Rationale for Cis-Selectivity N R2 SiMe3 + N2 R1 H N2 Me3Si N R1 R2 H R2 N2 H N R 1 R2 N H R1 TMS cis SiMe3 + N2 R2 H H N N2 trans R1 TMS Aggarwal, V. K.; Alonso, E.; Ferrara, M.; Spey, S. E. J. Org. Chem. 2002, 67, 2335-2344. Utilization of Michael Addition in Aziridine Synthesis Highly Diastereoselective, Auxiliary Mediated, Gabriel-Cromwell reaction O Br Br2 N H S O O O O * N Br S O O Et3N N Br S O O RNH2 R N O SN2 RNH N H S O O si-face protonation O H H R N O N N H Br S O O Br R = Bn (86%),100%selectivity R = p-C6H4OMe (89%) dr = 9:1 R = H (60%), 100%selectivity Garner, P.; Dogan, O.; Pillai, S. Tetrahedron Lett. 1994, 35, 1653-1656. S O O Aziridines from Azirines Synthesis of Optically Active Azirines via the Neber Reaction General O O R OR' 1) NH2OH.HCl, NaOH MeOH/H2O 2) TsCl, pyridine CH2Cl2 TsO R N O N O NEt3 CH2Cl2 OR' R OR' Enantioselective TsO R N N O O R OR' * OR' TsON H HO H N HH HO H OCH3 N KHCO3 + KOTs OCH3 N K2CO3 (s) Verstappen, M. M. H.; Ariaans, G. J. A.; Zwanenburg, B. J. Am. Chem. Soc. 1996, 118, 8491-8492. Enantioselective Conversion of Neber Derived Azirines to Aziridines O R O OR' 1) NH2OH.HCl, NaOH MeOH/H2O 2) TsCl, pyridine CH2Cl2 TsO N R O N O Base R OR' R R’ Base Yield (%) ee (%) Me Me Quinidine 40 81 (R) Me Et Quinidine 43 82 (R) N R COOR' H NaBH4 R H OR' H N COOR' H Exclusive formation of cis-aziridine carboxyic esters Verstappen, M. M. H.; Ariaans, G. J. A.; Zwanenburg, B. J. Am. Chem. Soc. 1996, 118, 8491-8492. Optically Active Aziridines via Resolution Optical Resolution by Complexation with Optically Active Compounds OH Ph C Ph Ph C Ph OH OH Ph Ph C Ph C Ph OH O O R N R N 1a R N Me 2a R = Et 2b R = nPr O CO2Me CO2Me CO2Et 2c R = Et 2d R = nPr 2e R = nPr 2f R = iPr O 1b 2a 2b 2c 2d 2e 2f host 1a 1a 1b 1b 1a 1a yield (%) 34 32 43 44 28 33 Mori, K.; Toda, F. Tetrahedron: Asym. 1990, 1, 281-282. % ee 100 not determined 64 100 100 100 Optical Resolution Through Lipase-Catalysed Alcoholysis O O OR2 N R1 R1 CH3 iso-Pr iso-Pr iso-Pr iso-Pr R2 CH3 CH3 CH3 CH2CF3 CH2CF3 Lipase Hexane, 40oC n-Butanol Lipase PPL PPL CCL PPL CCL Rxn time (days) 2 42 5 48 10 N R1 * O OR2 ee substrate 62.3 5 21 10 91 + N R1 ee product 66 54.5 32 >95 68 PPL = pig pancreatic lipase CCL = Candida cylindracea lipase Martres, M.; Gil, G.; Meou, A. Tetrahedron Lett. 1994, 35, 8787-8790 . * O-nBu Total yield (%) 95 50 61 73 90 Review of Routes to Chiral Aziridines • Addition of Nitrogen to Alkenes – Nitrenes – Atkinson-type Aziridinating Agents – Asymmetric Aziridination Catalysis • Aziridinations using Already Existing Stereocenters – Sharpless Asymmetric Epoxidation and Dihydroxylation – Amino Alcohols • Other Routes to Stereoselectivity – Imines – Michael Addition – Azirines • Resolution Acknowledgements • People who attended my practice talk: - Jodie Brice Matt Bowman Reagen Miller Greg Hanson Jeff Johnson Seol Kim Beatriz DeGuia Wendy deProphetis Susie Przbylinski • Special thanks to: – Wendy (computer, abstract) – Greg (abstract) – Juli