Transcript Document
NGB and their parameters Gradient expansion: parameters of the NGB’s Dispersion relations for the gluons Masses of the NGB’s The role of the chemical potential for scalar fields: BE condensation 1 Hierarchies of effective lagrangians Integrating out heavy degrees of freedom we have two scales. The gap D and a cutoff, d above which we integrate out. Therefore: two different effective theories, LHDET and LGolds 2 Gradient expansion: NGB’s parameters Recall from HDET that in the CFL phase D AB B dv A† iV DAB LD (L R) * 4 D AB iV DAB and in the basis D AB D AdAB 9 1 A i ( ) A i 2 A1 A1,,8 D D A DA D 2D A 9 9 3 dv A† iV D A A LD (L R) 4 D A iV Propagator dAB SAB V V D 2A Coupling to the U(1) NGB: V DA i / f DA V i / f Ue , Ve f , f L ei( ) L , R ei( ) R i U e U, i Ve V 4 Consider now the case of the U(1)B NGB. The invariant Lagrangian is: dv A† iV LD 2 4 U DA U†2 D A A iV At the lowest order in 0 dv A† L DA 2i 22 4 2 f f 2i 22 2 f f A 0 generates 3-linear and 4-linear couplings 5 Generating functional: Z[] DD e † i A( ) † 2 2i D 2 DA 1 A A() S0 0 1 2 f f 0 1 0 1 0 , 1 1 0 1 0 Z[] (det[A()]) 1/ 2 V S D A e 1 0 D A V 1 Tr[log A( )] 2 i Seff [] Tr[log A( )] 2 6 1 2iD 2 2 D iTr[log A( )] iTr log S 1 S 0 S 2 1 f f 2n 1 ( 1) iTr logS i n n 1 1 2iD 2 D i 0 iS 2 i1 iS f f 2 n At the lowest order: Seff iS(y, x)2i(x) D i iS(x, y)2i(y) D dxdyTr i0 i0 4 f f iS(x, x)22 (x) D i dxTr i1 2 2 f 7 Feynman rules For each fermionic internal line V idAB iSAB idABS(p) V V D 2A D A For each vertex a term iLint DA V For each internal momentum not constrained by momentum conservation: 2 2 d 4 2 d 3 d d 0 4 (2) 4 d Factor 2x(-1) from Fermi statistics and spin. A factor 1/2 from replica trick. A statistical factor when needed. 8 + iLeff 1 dv 2 D 2A iLI (p) iL II (p) 3 2 2 4 A f 2 2 2 V ( p) V V ( p) V 2 D 2 2 A d D ( p)D ( ) D ( ) A A A DA ( ) V V D i 2 A Goldstone theorem: LI (0) LII (0) 0 Expanding in p/D: 9 9 1 dv Leff (x) 2 2 (V )(x)(V )(x) f 2 4 2 0 0 1 0 1 0 0 0 3 dv 4 V V 0 0 1 0 3 1 0 0 0 3 2 1 9 2 2 2 Leff (x) v 0 2 2 2 f 1 9 2 v , f 2 3 2 2 CFL 10 For the V NGB same result in CFL, whereas in 2SC 2 1 4 v 2 , f 2 2 3 2SC With an analogous calculation: Leff 2 (21 8log 2) 1 8 a 2 2 a 2 ( ) v | | 0 2 2 36 F 2 a 1 2 1 (21 8log 2) 2 2 2 v , F FT 2 3 36 11 Dispersion relation for the NGB’s 1 E |p| 3 Different way of computing: 0|J | a b 0 1 iFd p , p p , p 3 ab Current conservation: 1 2 pp E | p | 0 3 2 12 Masses of the NGB’s QCD mass term: L M R h.c. M M Z2 L (Y†X)T e4iT L masses c det[M]Tr[M 1 h.c. c ' det()Tr[(M† ) 2 ] c" Tr[M† ]Tr[M †] 13 Calculation of the coefficients from QCD Mass insertion in QCD Effective 4-fermi 3D c 2 , c ' 0, c" 0 2 2 Contribution to the vacuum energy 14 Consider: LQCD 1 a a (iD 0 ) L M R R M L GG 4 Solving for ,L ,L as in HDET 1 i D M 2 0 ,L 0 ,R like chemical potential i 1 † † 0 L D iV D MM g ,L ,L ( D ) 2 ,L 2 2 † ,L L R, M M † 15 Consider fermions at finite density: L i ig 0 as a gauge field A0 Invariant under: Define: e i(t) , (t) 1 1 † † XL MM , X R MM 2 2 Invariance under: ,L L(t) ,L , ,R R(t) ,R , X L L(t)X L L† (t) iL(t) 0 L† (t), X R R(t)X R R † (t) iR(t) 0R † (t) 16 The same symmetry should hold at the level of the effective theory for the CFL phase (NGB’s), implying that T T MM M M 0 0 0 i i 2 2 † † The generic term in the derivative expansion of the NGB effective lagrangian has the form L NGB n m p 0 iMM / 2 M q †r F D 2 D D F 2 2 † 2 17 L NGB m n p 0 iMM / 2 M q †r F D 2 D D F 2 2 † 2 Compare the two contribution to quark masses: kinetic term mass insertion 4 4 m 1 m 2 2 FD 2 2 2 2 D F m 1 Dm FD 2 2 2 F F F 2 2 2 2 2 Same order of magnitude for F mD since 18 The role of the chemical potential for scalar fields: Bose-Einstein condensation A conserved current may be coupled to the a gauge field. Chemical potential is coupled to a conserved charge. The chemical potential must enter as the fourth component of a gauge field. 19 Complex scalar field: m i L 0 i 0 i m † † 2 2 † † 2 † 2 † 2 † † † 0 0 breaks C negative mass term p2 (m 2 2 ) 2Qp0 0 (Q 1) Mass spectrum: (E Q) m | p | 2 For < m 2 2 m P,P m 20 At = m, second order phase transition. Formation of a condensate obtained from: V m 2 2 † 2 2 m † 2 Charge density † 2 m V 2 † 2 m2 Ground state = Bose-Einstein condensate 21 v m 1 2 i(x ) / v (x) v h(x) e , v 2 2 1 1 L2 h h v 2 h 2 2h 0 2 2 2 Mass spectrum At zero momentum 2 p2 2v 2 det 2iE 2iE 0 2 p M M 2v 4 2 2 2 2 0 M2 0 M 2 62 2m2 22 At small momentum E NGB 2 m2 |p| 2 2 3 m E massive 2 2 9 m 2 6 2 2m 2 2 | p | 6 m 2 m 1 2 2 3 m 3 2 v 2 NGB 2 23 Back to CFL. From the structure m P,P m m m m 2c (m u md )ms , 2 2 F m K ms2 m 2u 2c (m u ms )m d , 2 2 F m K0 ,K0 2 d 2 u ms2 md2 2c (md ms )m u 2 2 F 3D 2 c 2 2 2 (21 8log 2) 2 F 362 First term from “chemical potential” like MM kinetic term, the second from mass insertions 24 † For large values of ms: m m K 2 s 2c (m u md )ms , 2 F m 2c ms md , m K0 ,K0 2 2 F 2 s m 2c ms m u 2 2 F and the masses of K+ and K0 are pushed down. For the critical value ms crit 1/ 3 12 3 2 2 m u,d D 2 3.03 3 m u,d D 2 , masses vanish F 25 ms crit 40 110 MeV 2 For larger values of ms these modes become unstable. Signal of condensation. Look for a kaon condensate of the type: e i 4 1 (cos 1) i 4 sin 2 4 (In the CFL vacuum, = 1) and substitute inside the effective lagrangian 2 1 ms 2 2cms m 2 V( ) F (1 cos ) sin 2 F 2 2 negative contribution from the “chemical potential” positive contribution from mass insertion 26 Defining eff 2 s m , 2 m 0 2 K 2cms m 2 F 1 2 2 0 2 V() F eff sin (m K ) (1 cos ) 2 2 with solution m cos and hypercharge density 0 2 K 2 eff , eff m 0 K m0 4 V K 2 nY eff F 1 4 eff eff 27 Mass terms break original SU(3)c+L+R to SU(2)IxU(1)Y. Kaon condensation breaks this to U(1) 1 1 Q 3 8 , [Q, ] 0 2 3 0 0 0 ( , ) (K , K ) (K , K ) () SU(2)I U(1) Y breaking through the doublet as in the SM Only 2 NGB’s from K0, K+ instead of expected 3 (see Chada & Nielsen 1976) 28 Chada and Nielsen theorem: The number of NGB’s depends on their dispersion relation I. If E is linear in k, one NGB for any broken symmetry II. If E is quadratic in k, one NGB for any two broken generators In relativistic case always of type I, in the non-relativistic case both possibilities arise, for instance in the ferromagnet there is one NGB of type II, whereas for the antiferromagnet there are two NGB’s of type I 29 Dispersion relations for the gluons The bare Meissner mass The heavy field contribution comes from the term † h D 2 2 iV D h P † h D D 2 iV D h 1 P g V V V V 2 30 Notice that the first quantized hamiltonian is: g2 2 2 H p gA eA0 | p | gA0 gv A | A | (v A) 2|p| Since the zero momentum propagator is the density one gets 3 2 d p 1 (p A) 2 2 g 2 Nf Tr A 3 2 spin (2) 2 | p | |p| |p| 2 2 g22 1 1 g a a 2 a a 2 Nf A A m BM A A , m BM N f 2 2 6 2 a 2 6 a 31 Gluons self-energy Vertices from a a igA J Consider first 2SC for the unbroken gluons: 2 2 g 00 2 ab (p) dab | p | , 2 2 18 D kl kl,self kl ab (p) ab (p) ab (p) from m2BM 2 2 2 2 2 2 2 g p g g kl kl kl 2 0 dabd 1 d d d d p , ab ab 2 2 2 2 2 0 3 6D 3 18 D 2 2 g 0k 0 k ab (p) dab p p 2 2 18 D 32 Bare Meissner mass cancels out the constant contribution from the s.e. All the components of the vacuum polarization have the same wave function renormalization 1 a 1 a b 1 a a k a a a a L Fa F ab A A E i E i Bi Bi E i E i 4 2 2 2 g 2 2 k 182 D 2 Dielectric constant = k+1, and magnetic permeability =1 1 D v g 33 Broken gluons a 00(0) - ij(0) 1-3 0 0 4-7 3mg2/2 mg2/2 8 3mg2 mg2/3 2 2 g 2 mg 2 3 34 But physical masses depend on the wave function renormalization g 2 2 2 D Rest mass defined as the energy at zero momentum: m R 2 D, a 4,5,6,7 g mR , a 8 The expansion in p/D cannot be trusted, but numerically mR 0.9D, a 4,5,6,7 35 In the CFL case one finds: 2 2 g 2 2 2 mD (21 8log 2) g F 2 36 2 2 2 g 11 2 1 m m2M 2 log 2 D 36 27 2 3 from bare Meissner mass Recall that from the effective lagrangian we got: m2D T g2 FT2 , m2M S v 2g 2 FT2 implying S parameters. T 1 and fixing all the 36 mD g 16 , 1 7 log 2 We find: m R 2 2 216 D 3 31 2 2 m R 1.70D Numerically mR 1.36D 37 Different quark masses We have seen that for one massless flavors and a massive one (ms), the condensate may be disrupted for ms2 2D The radii of the Fermi spheres are: 2 m pF1 2 ms2 s , p F2 2 As if the two quarks had different chemical potential (ms2/2) 38 Simulate the problem with two massless quarks with different chemical potentials: u d, d d u d u d , d 2 2 Can be described by an interaction hamiltonian H I d 3 † Lot of attention in normal SC. 39 HI changes the inverse propagator D V d 3 S * D V d 3 1 0 and the gap equation (for spin up and down fermions): dv 2 d 2 D ig 4 (2) 2 ( D 2 d ) 0 2 D2 This has two solutions: a) : D D 0 , b) : D 2d D 0 D 2 2 0 40 Grand potential: dD 0 2 dg 2 D0 g H g g dg 2 | D |2 g D0 2 dD 0 D 0 D 2 D0 ( D0) D0 Also: 2 0 (d) 0 (0) d 2 Favored solution D D0 41 D 0 (d) 2d 2 D 02 Also: 4 First order transition to the normal state at D0 d d1 2 For constant D, Ginzburg-Landau expanding up to D6 42