Transcript Folie 1
ESAC Summer Alumni Trainee Meeting 2010 X-ray spectra modeling for accretion plasma of magnetic white dwarfs Speaker: Origin: Institute: Tutor: Date: Alexander Kolodzig Humboldt-Universität, Berlin, Germany AIP (Astrophysical Institute Potsdam), Potsdam, Germany Axel Schwope 02.07.2010 Background Picture Credits : Mark A. Garlick Magnetic Cataclysmic Variable • Terminology: – accreting magnetic white dwarfs = MCV – alternative names: • Polar • “AM Herculis” - type 02.07.2010 Picture Credits : Mark A. Garlick X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig 2 MCV Roche-lobe overflow late-type main sequence star (Secondary) • Compact Binary: – mass ratio: 0.1 - 0.5 MSec./MWD – period: 80 min - 8.0 hours – separation: 0.5 - 2.0 R – accretion rate: 10-12 - 10-8 M /yr 02.07.2010 no accretion disc White Dwarf (Primary) Picture Credits : Mark A. Garlick X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig 3 MCV stagnation region late-type main sequence star (Secondary) • White Dwarf (WD): – strong magnetic field (B ≥ 10MG) – synchronized rotation: PSpin = POrbit – accretion onto magnetic pole(s) magnetic field lines White Dwarf (Primary) Shock 02.07.2010 Picture Credits : Mark A. Garlick X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig 4 Example X-ray spectrum (XMM-Newton: EPIC pn) Object: AM Herculis one temperature blackbody model Continuum: one temperature plasma emission model (XSPEC: “MEKAL”) main work stage: creating consistent multi-temperature model Bad fit: for demonstration purposes only! Credits: A. Schwope & J. Vogel 02.07.2010 X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig 5 Simple accretion scenario Illustration adapted from Teeseling et al. 1994 02.07.2010 TMax > 107 K X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig 6 Post-shock region hs << RWD x=0 h = hs Shock T1, 1 T2, 2 e- eIon T3, 3 Ion … … e- Tn-2, n-2 Tn-1, n-1 Ion e- - Bremsstrahlung (optical thin) - Cyclotron Radiation (optical thick) Tn, n x = xs e- Ion … Fischer & Beuermann (2001) 1D stationary two-particle-fluid hydrodynamic equations + Ion frequency & angle-dependent radiative transfer h=0 WD surface B = const. g = const. h - geometrical height [cm] x - column density [g/cm2] dx = - dh 02.07.2010 X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig 7 T + Distributions 3 main physical parameters: MWD – White Dwarf Mass B – Magnetic Field of the WD MFD – Mass Flow Density (accretion rate per unite area) Shock - Height Shock 02.07.2010 WD surface X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig 8 Magnetic Field Variation Cyclotron Radiation more efficient -> faster plasma cooling -> lower Temperature -> lower Shock Height -> higher Volume Density -> different Spectrum Shock 02.07.2010 WD surface X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig 9 Layer + Column Spectra X-ray continuum: Bremsstrahlung 02.07.2010 X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig 10 Various Column Spectra 02.07.2010 X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig 11 Example X-ray spectrum (XMM-Newton: EPIC pn) Object: AM Herculis emission lines one temperature blackbody model Continuum: one temperature plasma emission model (MEKAL) Credits: A. Schwope & J. Vogel 02.07.2010 X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig 12 Example X-ray spectrum (CHANDRA: HETG - HEG) Flux [Counts /(sA)] Fe XXV (Helium-like Iron) Credits: Girish et al. 2007 02.07.2010 Object: AM Herculis Fe XXVI (Hydrogen-like Iron) Reprocessed X-ray Wavelength [Angstroem] X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig 13 Synthetic X-ray spectra for AM Herculis Fe XXVI (Hydrogen-like Iron) Fe XXV (Helium-like Iron) - thermal broadening - no bulk velocity broadening -> Phase dependent - no gravitational redshift - no absorption Tools: XSPEC with APEC-Model 02.07.2010 X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig 14 Ionization Ratio with Iron Flux (Fe 26) Ion.Ratio = Flux (Fe 25) Tools: CHIANTI Database 02.07.2010 Shock WD surface X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig 15 Ionization Ratio + T Tools: CHIANTI Database 02.07.2010 Shock WD surface X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig 16 next work stages • further emission line analysis – bulk velocity broadening vs. phase – gravitational redshift • further consistency checks • testing Multi-T-Model with real data • Animation of a MCV: 02.07.2010 17sec X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig 17 Thank You For Your Attention! Contributions or Questions? e-mail: [email protected] Background - Slides MCV • Secondary: late-type main sequence star (Secondary) – solar like star • • • • hydrogen plasma ball hydrogen fusion with Tcore ~ 107 K PGrav ~ PGas T – low mass: M = 0.1 - 0.5 M • long lifetime: > t ~ 1010 years • low TSurface ~ 3500 K • Density ~ 10 g/cm3 02.07.2010 Picture Credits : Mark A. Garlick X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig 20 MCV • White Dwarf (Primary): – remnant of a solar like star – degenerated electron gas • PGrav ~ PDeg (No T) • Density > 105 g/cm3 – MWD = 0.4 - 1.0 M , Peak at 0.6 M • RWD ~ 1.5 M – elements: no H, mainly C & O – TSurface ~ 104 K 02.07.2010 White Dwarf (Primary) Picture Credits : Mark A. Garlick X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig 21 X-ray spectrum • hard x-ray: plasma emission – bremsstrahlung from the post-shock region – thermal plasma emission fit (“MEKAL”-Model) • soft x-ray: – reprocessed emission from the accretion region – blackbody fit • fits are one-temperature-models – what does this temperature mean? 02.07.2010 X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig 22 Theory • hydrodynamic equations: – two-fluid (ions and electrons separately) • connected by Coulomb interaction – conversation of mass, momentum and energy • electron gas heated by Ekin of the ions • electron gas cooled by radiation • radiative transfer: – frequency and angle-dependent transfer – cyclotron absorption, free-free absorption, electron scattering, no Compton scattering 02.07.2010 X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig 23 MFD Variation Shock WD surface Credits: Fischer & Beuermann 2001 02.07.2010 X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig 24 MFD Variation Shock WD surface Credits: Fischer & Beuermann 2001 02.07.2010 X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig 25 WD Mass Variation Shock WD surface Credits: Fischer & Beuermann 2001 02.07.2010 X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig 26 Electron Temperature Shock 02.07.2010 WD surface X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig 27 Ion Velocity Shock Credits: Fischer & Beuermann 2001 02.07.2010 WD surface X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig 28 Ion Velocity Density: (x) 1/v(x) Shock 02.07.2010 WD surface X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig 29 Bremsstrahlung Spectrum MWD = 0.6 M , B = 30 MG d = 10 pc D = 108 cm 10+2 10+1 cyclotron radiation 100 XMMNewton 10-1 Credits: Mass Flow Density [g/(scm2)] IR 02.07.2010 optical Fischer & Beuermann 2001 UV EUV X-ray X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig 30 Spectral Energy Distribution Optical – UV: accretion stream (interstellar absorption) Soft X-ray: reprocessed component (interstellar absorption) XMMNewton IR – optical: Secondary Star Hard X-ray: bremsstrahlung IR – UV: Cyclotron radiation Credits: Beuermann 1999 02.07.2010 X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig 31 Origin of radiation 02.07.2010 Picture Credits : Mark A. Garlick X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig 32 02.07.2010 X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig 33 Fe XXVI Hydrogen-like Iron Fe XXV Helium-like Iron Tools: XSPEC with APEC-Model and thermal broadening 02.07.2010 X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig 34 Tools: CHIANTI-Database 02.07.2010 Shock X-ray spectra modeling for accretion plasma of MCVs - Alexander Kolodzig WD surface 35