Transcript Slide 1

Common Avionics Approach
SpaceAGE Bus & cFE/CFS:
Software & Hardware Component Based
Architecture
Presenters: Jonathan Wilmot & Glenn Rakow
NASA-GSFC
7/25/2012
Common Avionics- Page 1
Background: Avionics Current Practice
•
Each organization that builds space systems has their own approach to
implementation, so within organizations there are de facto standards
– Necessary to save money
– Or make profit
•
However among space builders there is little interoperability
– Mechanical approach differences
– Electrical interfaces differences
– Software architecture differences
•
Even though the implementation methods used are very similar
– Procured Single Board Computer – BAE Rad750, Leon 3
– Bus protocols – Mil-Std-1553, SpaceWire
– Mechanical approach – Backplane in mechanical chassis
– etc.
7/25/2012
Common Avionics- Page 2
Basic Tenets – Common Avionics
•
Standards – Interfaces, protocols,
electronic data sheets, examples:
–
•
Software architectures, examples:
–
•
SpaceWire, Mil 1553b, RMAP, USB PnP, 6U
Each of these can stand alone and be
applied to a wide variety of missions
–
–
•
Frameworks, design patterns, Application
Programmer Interfaces (API),
Hardware – Interfaces, form factors,
protocols, examples:
–
•
CCSDS AOS, Internet Protocol (IP), xTEDS
Missions may use 1553, or CCSDS AOS but
can not interoperate
Hardware
Software
Common
Avionics
Standards
Current approach for many organizations
Common Avionics are defined by the
intersection
–
Each organization can define it’s own
intersection, common only to that organization
•
7/25/2012
Example: AFRL Space Plug-and-play Avionics
(SPA)
Common Avionics- Page 3
Common Avionics Goal
• Reduce Non Recurring Engineering cost of space avionics through
reuse
• Be applicable to majority of space missions both robotics and crew
rated vehicles
• Compatibility of avionics between vendors
– Necessary for Human Exploration Programs
• Develop different vehicles/systems from same components
• Increase pool of compatible products
– Focus limited resources to create synergy in space industry
• Technology independent – focus on interfaces not implementations
– Protocols not defined
• Few possibilities - allows space community to converge based upon demand
• Provides system engineer flexibility
• Stream-line integration of avionics components (hardware &
software) similar to commercial “plug-n-play”
7/25/2012
Common Avionics- Page 4
Common Avionics Business Model
• Encourage exchange of designs in open market that may be
integrated to implement system
– Designs may have different levels of compatibility but market forces
should force convergence to small group of options
• Government agencies use tech transfer offices to make designs
available to industry that can then be purchased on open market
– Current example:
• GSFC developed the SpaceWire Test Set (SWTS) hardware and software.
• Via Tech Transfer office, SWTS designs provided to support contractor, who
markets and sells the SWTS product.
• Effort involves procuring the Printed Wiring Board (PWB), outsource the PWB
assembly, and test with software.
• To date 150 SWTS have been built for multiple agencies and projects
• Currently, GSFC cFE/CFS and SpaceWire IP core (both software
products) are widely distributed and used on non-GSFC
missions
– Help is needed in developing a governance model for
maintaining/updating code
7/25/2012
Common Avionics- Page 5
Potential New Budget Model
Avionics cost savings
•Development cost => Build-to-Print
•Hardware cost approaches a reduction of
80-90%
•Based upon LCRD HSE budget
•Reduction of quality assurance and
system engineering due to COTS
component
•Reduction of risks
•Reduction of documentation
•Reduction of schedule and manpower
•Time is money => delay requires funding to
carry manpower longer
Cost
•Less development
Build-to-Print
Reuse
7/25/2012
Common Avionics- Page 6
Building Block Elements
Definition:
• Building block element is a software or hardware functional
standalone unit of implementation with completely defined interfaces,
so that they can be integrated together to form increasingly complex
systems.
Examples:
• Hardware
– Printed Wiring Boards (PWBs) built to a standard mechanical form factor
with defined electrical interfaces
– Modules – comprised of a single or multiple PWBs integrated together
into a mechanical card frame to form a increasingly complex function
• Software
– Software component that has interface to a defined software bus so that
a publish/subscribe messaging service
– Hypervisor – supports low level time-space partitioning to protect the
operating system from crashing
7/25/2012
Common Avionics- Page 7
NASA/GSFC’s Flight Software Architecture:
Core Flight Executive and
Core Flight System
Jonathan Wilmot
Software Engineering Division
NASA/Goddard Space Flight Center
[email protected]
301-286-2623
7/25/2012
Common Avionics- Page 8
cFE/CFS Introduction
Core Flight System (CFS)
•
•
Core Flight System (CFS)
– A Flight Software Architecture
consisting of the cFE Core,
CFS Libraries, and CFS
Applications
core Flight Executive (cFE)
– A framework of mission
independent, re-usable, core
flight software services and
operating environment
• For cFE/CFS, each element is
a separate loadable file
7/25/2012
CFS
App
CFS
App
CFS
App
core
Flight
Executive
(cFE)
CFS
Library
CFS
App
CFS
App
CFS
App
CFS
Library
Common Avionics- Page 9
CFS Flight Software Layers
CFS
App 1
CFS
App 2
CFS
App N
Mission
App 1
Mission
App 2
Mission
App N
Mission
Library
CFS Library
cFE Core
OS Abstraction
Layer
Real Time OS
cFE Platform Support
Package
Board Support
Package
Mission and CFS
Application Layer
Mission and CFS
Library Layer
http://sourceforge.net/projects/coreflightexec
http://sourceforge.net/projects/osal
RTEMS, VxWorks, Linux
CFE Core
Layer
Abstraction
Library Layer
RTOS / BOOT
Layer
Mission Developed
PROM Boot FSW
GSFC Developed
3rd Party
7/25/2012
Common Avionics- Page 10
cFE Core - Overview
•
A set of mission independent, re-usable, core flight software services and
operating environment
– Provides standardized Application Programmer Interfaces (API)
– Supports and hosts flight software applications
– Applications can be added and removed at run-time (eases system
integration and FSW maintenance)
– Supports software development for on-board FSW, desktop FSW
development and simulators
– Supports a variety of hardware platforms
– Contains platform and mission configuration parameters that are used to
tailor the cFE for a specific platform and mission.
Executive
Services
(ES)
7/25/2012
Event
Services
(EVS)
Software
Bus
(SB)
Table
Services
(TBL)
Time
Services
(TIME)
Common Avionics- Page 11
Exemplar GSFC Flight Software Architecture
Sensors &
Actuators
Instruments
Mass
Storage
File System
Hardware
Hardware
I/Fs
I/Fs
Sensor/actuator
I/O handlers
Limit
Checker
Memory
Manager
Stored
Commanding
Space
Wire
Instrument
Managers
CFDP File
Transfer
Data
Storage
Device
adapters
Attitude
Determination
&
Control
Software
Scheduler
Orbit
Models
Solar
Array
High-Gain
Antenna
File
Manager
Local
Storage
Housekeeping
EDAC
Memory
Scrubber
Inter-task Message Router (SW Bus)
Manager
1553 Bus
Support
Telemetry
Output
Command
Ingest
Software
Bus
Time
Services
Executive
Services
Event
Services
Table
Services
C&DH Components
Commands
GN&C Components
cFE Components
1553
Hardware
Communication
Interfaces
Real-time Telemetry
File downlink (CFDP) via SpaceWire
Note - Some connection omitted for simplicity
7/25/2012
Common Avionics- Page 12
Facets of Common Avionics
• Software
– NASA cFE/CFS example of a component software architecture
• Hardware
– SpaceAGE bus (intra-box interface definition)
• Modular
• Standalone
• Scalable
• Interface Control Document definition
• Maintain reasonable flexibility with these area
Examples:
– Software – allow different operation systems
– Hardware – allow different protocols
– Electronic Data Sheet (EDS) – work with different software architecture
7/25/2012
Common Avionics- Page 13
Electronic Data Sheet (EDS)
7/25/2012
Common Avionics- Page 14
SpaceAGE bus
Intra-Box Interface Definition
•
SpaceAGE bus defines how to integrate Hardware modules together –
analogous to cFE/CFS software bus
•
Hardware modules analogous to cFE/CFS software components
•
2 module types defined – Hub and Node – every box has 1 Hub and one
or more Nodes
– Serial interfaces; Protocol agnostic
•
Electrical interfaces- Power; Comm; Analog; Clock; Reset; Converter
Sync; Module Detect
•
Mechanical interface – Card frame
– No backplane nor chassis
– X&Y dimensions defined – Z (height) not defined (flexible)
•
FOMs:
– Minimize NRE (cost and schedule)
– Broad mission applicability – supports all reliability schemes (cross-strapped, etc.)
– Incremental Design
7/25/2012
Common Avionics- Page 15
SpaceAGE Bus Architecture
Node
Module
Node
Module
Node
Module
Hub
Module
Node
Module
Node
Module
Node
Module
Node
Module
Legend
SpaceAGE Bus Interface
• power
• comm.
• analog
• miscellaneous signals
•typically used for avionics systems
7/25/2012
Common Avionics- Page 16
RIU Example using Integrated Modular
Avionics (IMA) Approach
Epoch
Heater
Card
Pyro
Card
TTP/C
Switch
Epoch
Prop
Card
Time
External I/F to
Higher Controller
Time
Slot
External
Vehicle Control
Bus
Hub
Module
Hypervisor implementing “skinny” version of time-space partitioning
Synchronized to Time-triggered data bus
Legend
Time Triggered TTP/C (~10 MHz), with Bus Guardian
Processing, implementation not specified (could be embedded in FPGA)
7/25/2012
Common Avionics- Page 17
Distributed IMA (DIMA) Approach
Function 1
Control
Application
Function 2
Control
Application
Function 3
Control
Application
Operating
System
Operating
System
Operating
System
CPU
1
CPU
2
CPU
3
CPU sleep
1
TTP/C
Switch
CPU
1
CPU
2
External
Vehicle Control
Bus
CPU External
Vehicle Control
2
Bus
CPU External
Vehicle Control
3
Bus
Hub
Module
Hub
Module
Hub
Module
Node
Node
sleep
sleep
CPU
3
sleep
sleep
sleep
sleep
sleep
Multiple Timelines Illustrating
Distributed Processing Concurrently
Node
Node
Node
Node
Legend
Time Triggered TTP/C (~10 MHz), with Bus Guardian
Processing, implementation not specified (could be embedded in FPGA)
7/25/2012
Common Avionics- Page 18
Application of SpaceAge Bus
7/25/2012
Common Avionics- Page 19
Implementation Example - Altair
7/25/2012
Common Avionics- Page 20
Altair Avionics Design Approach
(Distribution Process)
•
Break vehicle up into sectors
– AM and AL into quadrants
– DM into upper and lower quadrants
•
Gather the MEL components (sensors and actuators) into the various
sectors per subsystem function
– From ProE vehicle layout drawing
•
•
Select module functions to perform requirement
Estimate board and box sizes and locate Distributed Avionics Units
based upon data to minimize harness mass
– Rule of thumb – keep sensors and efforts within 10 feet of Remote Interface Unit
(RIU) – point where harness mass dominates box mass
– Otherwise consider adding additional RIU in area
•
•
Reliability analysis
Iterate
7/25/2012
Common Avionics- Page 21
Location on Vehicle
(Example: AM Functions per Quadrant)
Unpressurized AM
4
1
4/1
3
1
1/2
Antenna, S-band
He Tank w/ Iso
MMH Tank w/ Iso
He Tank
Flight Computer
He Tank
MMH Tank w/ Iso
He Tank
Antenna,
Emergency
RCS Thruster
Pod
NTO Tank w/ Iso
RCS Thruster
Pod
RMUX, CSA
RCS Thruster
Pod
NTO Tank w/ Iso
He Pyro Valves
Battery, Primary
GO2 Tanks,
Pri & Sec
Optics, LIDAR
Antenna, S-band
RMUX
Antenna, S-band
Star Tracker
3
3/4
4
RCS Thruster
Pod
Electronics,
Displays/Controls
Antenna,
Emergency
Running Light
Get Home GO2
Tank
GN2 Tank
GN&C System
Antenna,
Emergency
Avionics, LIDAR
SIRU (2)
Running Light
Bus Repeater
Main Engine
Bus Repeater
Sublimator H2O
Tank
Bus Repeater,
CSA
Rendezvous
Camera
Flight Computer
Sublimators (2)
Flight Computer
C&T Radio
Router, C3I
Inertial Meas.
Unit
Video Processing
Unit
Disconnect
system, AM/DM
Communication
Hub, RCS
Pyro Firing Circuit
RMUX B
Pyro Firing Circuit
RMUX A
N2 Controller
Sec. Structure,
Instrumentation, RCS
* Assumed based on location of “Life Support System Mounting”
Active Thermal
Control
2/3
Suit Loop
Controllers, P&R
Propellant
Manifold
2
2
** Assumed based on location of “Instrumentation Box Mounting”
C&DH
C&T
ECLSS
Electrical Power
Pressurized AM
GN&C
Swing Beds,
Amine (2)
Mechanisms
Major Constituent
Analyzer
Life Support
System *
Monitor
Crew Microphone
Speaker
Monitor
PDU, Type-1
Side Hatch
Fan Controller
Keyboard
Keyboard
Accumulator,
potable water
Top Hatch
Bed, Trace
Contaminant Control
Controllers (2)
Trans, Rotational
Controllers (2)
Trans, Rotational
Heat Exchanger,
LCG Loop
Internal Light
Vehicle Assembly
Interface (2)
Long-Range laser
Range Finder
Crew Interface
Unit (2)
Urine/Waste
Collection
Instrumentation
Box **
Crew Interface
Unit (2)
Biocide Tank
Pumps (2) and
Accum., PG Loop
Suit Loop
Compressors (2)
Propulsion
Unknown/
Undetermined
Suit Loop Heat
Exchanger
Cabin Heat
Exchanger
Cabin Fan
Vehicle Assembly
Interface (2)
7/25/2012
Common Avionics- Page 22
Propulsion Functions per Module/Sector
DM RCS He Pressurization
T
P
3L
3U
VD(4)
VS(2)
RCS He
Isol Vlvs
H
T*
HeMMH
Mech
Regulator
DM MPS LH2 He Pressurization
T
H(2)*
T(2)*
HeNTO
Mech
Regulator
H
T*
HeLH2-Ld
Pyro Vlv
NSI
2U
P
He
Tank
P
HeMMH
Pyro Vlv
NSI
NSI
HeNTO
Pyro Vlv
NSI
T
P
NSI
T
P
Burst
Disk
DM RCS Propulsion Tanks
T(2)*
H(2)
Q
MMH
Tank
NTO
Tank
3U
2U
MMH
Pyro Vlv
NSI
T
H(2)*
T(2)*
P
P
He
Tank
Unconnected on
schematic - couldn’t find in
CAD model.
T
H(2)*
T(2)*
NSI
NTO
Pyro Vlv
3U
VD(2)
VS(2)
VD(2)
VS(2)
HeLO2
Iso Vlvs
VD(2)
VS(2)
NSI
HeLH2-Dr
Pyro Vlv
NSI
NSI
HeLO2-Dr
Pyro Vlv
NSI
VD(2)
VS
HeLH2
Vent Vlvs
VD(2)
VS
VD(2)
VS
HeLO2
Vent Vlvs
NSI
HeLH2-Dr
Pyro Vlv
NSI
VD(2)
VS
HeLO2
Vlv
VD
VS
He
Iso Vlv
He
Iso Vlv
VD
VS
P
He
Mech
Regulator
He
Mech
Regulator
P
He
Relief Vlv
He
Relief Vlv
NSI
MMH
Pyro Vlv
NSI
1U
NSI
H
T*
MMH
Iso1 Vlv
VD(2)
VS
NTO
Iso1 Vlv
VD(2)
VS
A1
A2
VD(2)
P
T(4)*
H(2)
VD(2)
P
T(4)*
H(2)
A3
A4
C1
C2
2U
NSI
H
T*
H
T*
MMH
Iso1 Vlv
VD(2)
VS
VD(2)
VS
B1
B2
VD(2)
P
T(4)*
H(2)
VD(2)
P
T(4)*
H(2)
DM MMH Vent
NSI
P
MMH
Pyro Vlv
P
MMH
Tank
NSI
2U
T
MMH
Pyro Vlv
T
NSI
Ctrl
Valve Driver
Bilevel Valve Status
Temperature
Pressure
Diff. Pressure
Flow Indicator
Oxygen
Liquid Quantity
Liquid Depletion
Stepper Motor Driver
Position Indicator
Tachometer
He
Mech
Regulator
H
T*
NTO
Iso1 Vlv
B4
VD(2)
P
T(4)*
H(2)
VD(2)
P
T(4)*
H(2)
4
D2
VD(2)
P
T(4)*
H(2)
VD(2)
P
T(4)*
H(2)
VS(2)
LH2 Pne
Fill Vlv
VD(3)
VS(2)
H
T*
P(2)
D1
LO2
TVS Vlvs
P
HeMMH
Iso Vlv
2L
P
D3
D4
HeNTO
Pyro Vlvs
4
NSI(7)
Burst
Disk
4/1
VD
VS(2)
LO2 Pne
Fill Vlv
VD(3)
VS(2)
LO2
Vent Vlvs
VD
VS(2)
P
He
Cooldwn
Vlv
VD
VS(4)
P
Pne LH2
Prestart
Vlvs
VD
VS(2)
P
He
Start Vlv
RPM
T
P(3)
LH2
Pump
VS(2)
Pne LH2
DscRlfBld
Vlv
VS(2)
Pne LH2
IntCldBld
Vlv
NTO
Tank
1/2
Q
T
MMH
Tank
3/4
MMH
Isol Vlv
VD(2)
VS
VD(2)
VS
Pne LO2
Prestart
Vlvs
LO2
Pump
RPM
NTO
Isol Vlv
VD(2)
VS
P
Pne
Isol Vlv
H
T*
T
H
T*
VD
VS
MMH
Iso2 Vlv
VD
VS
MMH
Iso1 Vlv
VD
VS
VD
VS
NTO
Iso1 Vlv
VD
VS
NTO
Iso2 Vlv
VD
VS
NTO
Iso1 Vlv
VD
VS
VD(2)
P*
T(4)*
H(2)
H
T*
P(2)
A1
VD(2)
P*
T(4)*
H(2)
VD(2)
P*
T(4)*
H(2)
A2
VD(2)
P*
T(4)*
H(2)
VD(2)
P*
T(4)*
H(2)
A5
H
T*
P(2)
A3
VD(2)
P*
T(4)*
H(2)
B1
VD(2)
P*
T(4)*
H(2)
A4
VD(2)
P*
T(4)*
H(2)
B2
VD(2)
P*
T(4)*
H(2)
VD(2)
P*
T(4)*
H(2)
B5
1
VD
VS
VD
VS
NTO
Iso1 Vlv
VD
VS
NTO
Iso2 Vlv
VD
VS
NTO
Iso1 Vlv
VD
VS
SMD
PI
LH2
Cvt Vlv
P
H
T*
MMH
Iso1 Vlv
LH2
ThrCnt
Vlv
B4
H
T*
VD
VS
SMD
PI
P
T
T
H
T*
MMH
Iso2 Vlv
VD(2)
P*
T(4)*
H(2)
B3
AM RCS Thruster Pod D
H
T*
VD
VS
LH2
Pump
Byp Vlv
NTO
Iso2 Vlv
2
MMH
Iso1 Vlv
SMD
PI
MMH
Iso2 Vlv
H
T*
P(2)
VD
VS
Pne LH2
MnSht
Vlv
LO2
Cnt Vlv
H
T*
MMH
Iso1 Vlv
VS(2)
SMD
PI
H
T*
VD
VS
T
Could not find separate
valves/pumps. Assume
this is all part of the “turbo
pump” assembly in bottom
center
One Isol. Valve on each
tank
AM RCS Thruster Pod B
AM RCS Thruster Pod C
L
VD(2)
VS
P
H
T*
P(2)
VD
VS(4)
P
NTO
Tank
AM RCS Thruster Pod A
L
T
ΔP
DM Descent Main Engine
LO2
Manifold
Q
T
MMH
Tank
Q
T
3/4
Pne
Isol Vlv
T
P
2U
NSI(7)
3/4
2/3
1/2
LO2
Tank
P
T
VS(2)
LH2
Vent Vlvs
VD(2)
VS
P
U
VD
VS
L
Q
P
L
T
P
NTO
Iso2 Vlv
VD(2)
VS
H
T*
P(2)
B3
MMH
Iso2 Vlv
VD(2)
VS
LH2
Manifold
He
Mech
Regulator
LO2 Tnk
Vent Vlv
VS(2)
T
P
T
He
Iso Vlv
P
T
LO2
Pumps
3
VD
VS(2)
4U
VD(2)
VS
1/2
VD
VS
P(2)
T
VD
VS
T
P
ΔP
FI
O2
Q
L
SMD*
PI*
RPM
He
Mech
Regulator
T(2)
P(4)
VD(2)
VS
P
LO2 Heat
Exch
VD
VS
2
1
C4
NSI
MMH
Iso1 Vlv
VD(2)
VS
H
T*
P(2)
VD(2)
P
T(4)*
H(2)
VD(2)
P
T(4)*
H(2)
He
Iso Vlv
VD(2)
VS
LO2
TVS Vlvs
L
U
DM Manifolds and DME Feed
MMH
Pyro Vlv
VD(2)
VS
NTO
Iso2 Vlv
VD(2)
VS
H
T*
P(2)
He
Iso Vlv
1U
P
T
ΔP
H
T*
MMH
Iso2 Vlv
VD(2)
VS
NTO
Iso1 Vlv
VD(2)
VS
NSI
LH2 Tnk
Vent Vlv
P
VD
VS
4
He
Tank
P
VD
VS
P
T
VS(2)
LH2
Tank
C3
T
MMH
Pyro Vlv
VD(2)
VS
DM LO2 Tank (x4)
L
Q
P
VD(2)
P
T(4)*
H(2)
VD(2)
P
T(4)*
H(2)
DM RCS Thruster Pod D
T
NSI
H
T*
P(2)
VD(2)
P
T(4)*
H(2)
VD(2)
P
T(4)*
H(2)
LH2
TVS Vlvs
VD
VS
NTO
Iso2 Vlv
VD(2)
VS
H
T*
P(2)
DM RCS Thruster Pod B
NSI
NTO
Iso1 Vlv
VD(2)
VS
H
T*
P(2)
VD(2)
P
T(4)*
H(2)
VD(2)
P
T(4)*
H(2)
He Fl Vlv
Q
T
LH2
Stir Fans
MMH
Iso2 Vlv
VD(2)
VS
3
He
Tank
AM Propulsion Tanks
VD
VS
LH2 Heat
Exch
L
H
T*
MMH
Iso1 Vlv
VD(2)
VS
NTO
Iso2 Vlv
VD(2)
VS
H
T*
P(2)
3U
NSI
H
T*
MMH
Iso2 Vlv
VD(2)
VS
MMH
Pyro Vlv
NSI
H
T*
LH2
TVS Vlvs
VD
VS
T
He
Tank
Burst
Disk
DM LH2 Tank (x4)
DM RCS Thruster Pod C
T
2
He
Tank
VD
VS
1
2U
P
T
DM RCS Thruster Pod A
1
P
DM He Pnuematic Control Regulator
Q
NSI
T
H(2)*
T(2)*
AM He Pressurization
1L
NSI
HeLH2
Iso Vlvs
3U
T(2)*
H(2)
HeLO2-Ld
Pyro Vlv
NSI
VD(2)
VS(2)
2U
Burst
Disk
DM MPS LO2 He Pressurization
NSI
H
T*
P(2)
H
T*
P(2)
C1
VD(2)
P*
T(4)*
H(2)
VD(2)
P*
T(4)*
H(2)
C2
VD(2)
P*
T(4)*
H(2)
VD(2)
P*
T(4)*
H(2)
C5
H
T*
P(2)
C3
VD(2)
P*
T(4)*
H(2)
C4
3
MMH
Iso2 Vlv
NTO
Iso2 Vlv
H
T*
P(2)
D1
VD(2)
P*
T(4)*
H(2)
VD(2)
P*
T(4)*
H(2)
D2
VD(2)
P*
T(4)*
H(2)
VD(2)
P*
T(4)*
H(2)
D5
D3
D4
4
AM Ascent Main Engine
T(2)
P(2)
P(2)
DME
Couldn’t find valves on
CAD. He doesn’t run to
AME.
VD(2)
VS(2)
Pne
Isol Vlvs
VD(2)
VS(2)
VD(2)
VS(2)
He Purge
Vlvs
VD(2)
VS(2)
Assume Iso Valves are
included in thruster pods.
T(4)
PI(4)
T
P(4)
AME
Embedded Controller/Electronics
7/25/2012
Common Avionics- Page 23
Distributed Avionics Unit Configuration
Pass-Thru
Power
Effectors
Pass-Thru
Power
Sensors
Effectors
Subsystem Specific Slice
e.g. Thermal
Sensors
Subsystem Specific Slice
e.g. Propulsion
Primary
Voltage
Vehicle Control Bus
Common Controller Slice
(HUB)
EMI Filter
Rx
Power Driver
Circuit(s)
Analog
Sensing
Circuits
(Optional)
Power Driver
Circuit(s)
Analog
Sensing
Circuits
(Optional)
VDD
Switching
Isolated
&
POL; LDO
Target
Interface
VDD
+28V
Logic
VDD
Vehicle Control Bus
(Protocol Program Specific)
Memory
Target
Interface
Memory
Management
Unit
Tx
7/25/2012
Rx
Tx
Rx
Tx
Switching
Isolated
& POL; LDO
Microprocessor
Current Limiter
Circuit Breaker
Cross Bar Switch
(Serial Backplane)
Switching
Isolated
&
POL; LDO
...
Rx
Tx
...
Rx
...
Current Limiter
Circuit Breaker
Current Limiter
Circuit Breaker
...
Current Limiter
Circuit Breaker
Tx
Cabled Interfaces (just Power & Comm. Shown)
Common Avionics- Page 24
Example RIU - AM Monitor 1
4
8
2
2
1
2
1
2
1
C&T
Power
RF Switches
Switching
27
49
1
13
30
5
4
4
5.6 kg
8
15
4
Power
(W)
13
10
2
6
1
1
1
1
1
1
Mass
(Kg)
1
4
4
Harness Mass
(80 wires @
10ft)
14
4
1
1
AWG 26 TST
1
22 AWG
AWG 26 TSP
2
C&DH
Wiring
AWG 22 TSP
O2
3
RPM
Fl
1
Power
Wiring
Power Services
AWG ??
Power Services
AWG 16 TP
Power Services
AWG 20 TP
L
2
Serial
dP
10
Network
P
4
Pl
T
25
Q
VS
1
13
13
ATCS
Digital Inputs
18
8
Functional
Description:
Analog Inputs
8
NSI
H
Sw Serv
26
3
FET
SMD
HUB-6U
C-6U-CH18D4H32DA
E-6U-CH18D4H32DA
T-6U-CH16V6H32DA
S-6U-CH16
S-6U-CH16
2 FET
VD
Type
1 FET
RD
Name
TOTAL
Controller & PS
AM C&T Monitor 1
AM ECLSS Monitor 1
AM ATCS Monitor 1
AM Monitor 1, SSC 1
AM Monitor 1, SSC 2
Internal Harness
End Caps (2 ea)
RPC
Relay
Con RPC
7.81
1.07
1.07
1.07
1.07
1.07
1.07
0.85
0.54
21.00
4.80
0.98
2.23
2.78
5.11
5.11
Pumps
Accumulator
Propylene Glycol Loop
ATCS
ATCS
C&T
7/25/2012
ECLSS
End Cap
10” x 7.5” x 6.5” (L x W x H)
L x W = mounting surface
(includes 0.75” flange)
W x H = connector face
End Cap
Size:
P-A-CH16H
C&DH
AM Pressurized
P-A-CH16H
Location:
Vent valves
LGC system
Potable water
Suit loop
Swing bed control
Cabin air supply
Cabin air return
Cabin Waste venting
Power Supply &
Controller
E-ACH18D4H32DA
E-ACH18D4H32DA
T-ACH16V6H32DA
ECLSS
Power
GN&C
Mech
Prop
Structure
Common Avionics- Page 25
Example RIU - AM Prop Monitor
Power
Switching
7/25/2012
10
9
3.4
1
Power
(W)
30
1
15
14
Harness Mass
(49 wires @
10ft)
AWG 26 TSP
19
AWG 26 TST
AWG 22 TSP
4
1
1
1
Mass
(Kg)
13
RPM
2
2
Power Services
AWG ??
Power Services
AWG 16 TP
Power Services
AWG 20 TP
5
4
1
1
Serial
3
3
Network
5
5
Q
10
9
Fl
4
L
9
dP
6
Pl
O2
NSI
SMD
VD
RD
H
Sw Serv
10
C&DH Wiring 22 AWG
5.47
1.07
1.07
1.07
11.93
4.80
1.01
1.01
1.07
0.65
0.54
5.11
Location:
ATCS
AM Unpressurized
C&DH
Size:
10” x 5.5” x 6.5” (L x W x H)
L x W = mounting surface
(includes 0.75” flange)
W x H = connector face
ATCS
C&T
ECLSS
End Cap
He Tanks Status
He Tanks Iso Valves
MMH Tanks Status
MMH Tanks Iso Valves
NTO Tanks Status
NTO Tanks Iso Valves
19
Power
Wiring
P-A-CH16H
Prop
Digital Inputs
Power Supply &
Controller
P-ACH11T32DA
P-ACH11T32DA
Functional
Description:
Analog Inputs
End Cap
S-6U-CH16
13
3
FET
P
HUB-6U
P-6U-CH11T32DA
P-6U-CH11T32DA
2 FET
T
Type
1 FET
VS
Name
TOTAL
Controller & PS
AM Prop Mon AME
AM Prop Mon AME
AM Prop Monitor, SSC
1
Internal Harness
End Caps (2 ea)
RPC
Relay
Con RPC
Power
GN&C
Mech
Prop
Structure
Common Avionics- Page 26
Avionics Totals
AL Total
DM PDU 2 Total
AL ECLSS Monitor Total
AL PDU Total
7/25/2012
14
4
14
13
4
12
13
13
13
18
12
12
17
30
14
29
9
14
7
9
7
2
162 14
36 12
8
8
1
1
38 132 138 97
34 12 18
32
2
26
16
20
16
16
7
7
2
19
19
10
12
12
150 96 501
65 42 216
6 27
7 38
4 19
3 28
3 28
3 28
3 28
3 10
3 10
11 1
30 3
24 3
76 50 278
7 48
752
318
49
78
30
39
39
39
39
1
1
1
1
1
418
78
4
4
4
535
80
116
49
67
67
67
67
11
11
37.4
5.6
8
3.4
4.7
4.7
4.7
4.7
0.8
0.8
693
126
Power
(W)
10
DM Monitor 1 Total
DM Prop Mon MPS 1
Total
DM Prop Mon MPS 2
Total
DM RCS Driver 1 Total
DM RCS Mon Driver 2
Total
DM RCS Driver 3 Total
DM RCS Driver 4 Total
DM Pyro Driver (P) Total
DM Pyro Driver (R) Total
DM MBSU Total
10
DM PDU 1 Total
11
30 28
24 28
76 121 62
13
4
4
4
Mass
(Kg)
5
4
26
12
1
1
1
1
1
1
1
1
1
1
1
1
12
1
Harness Mass
17
5
1
4
# wires 10ft)
14
4
AWG 26 TST
3
2
2
AWG 26 TSP
Monitor 1 Total
Monitor 2 Total
Prop Monitor Total
RCS Driver 1 Total
RCS Driver 2 Total
RCS Driver 3 Total
RCS Driver 4 Total
Pyro Driver (P) Total
Pyro Driver (R) Total
MBSU Total
PDU 1 Total
PDU 2 Total
58 225 271
20 86 130
25 4
35 20
10 6
4 25
4 25
4 25
4 25
10
10
C&DH Wiring 22AWG
AWG 22 TSP
Pl
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
AM
15 150 249 121 18 289 15
5 65 121 59 16 120 1
26
8 18 1
26 3
8 27
13
19
14
14
14
14
14
14
14
14
RPM
Q
6
5
3
2
Box
Power
Wiring
Power Services
AWG ??
Power Services
AWG 16 TP
Power Services
AWG 20 TP
O2
10
2
1
1
Serial
Fl
Digital Inputs
170 10
70 2
10 2
15
9
9
9
9
9
P
T
VS
Analog Inputs
Network
3
FET
NSI
SMD
VD
RF SW
H
Sw Serv
2 FET
L
DM Total
1 FET
dP
Module
Grand
Total
AM Total
RPC
Relay
Con RPC
48.4
8.8
204.02
88.87
7.71
8.88
5.37
4.20
4.20
4.20
4.20
4.20
4.20
22.38
10.26
9.05
106.66
8.88
342.74
151.82
21.00
22.02
11.93
10.72
10.72
10.72
10.72
6.15
6.15
6.05
18.13
17.51
172.73
20.27
44
17
23
4
4
4
1
6
36
97
133
9.3
7.71
20.65
35
5
14
21
18
8
4
4
4
1
1
6
5
30
32
80
35
110
67
7.7
4.7
7.71
6.54
20.65
16.26
6
4
4
32
21
21
14
8
8
2
1
1
1
1
1
1
1
5
4
4
4
4
1
2
38
28
28
19
19
55
34
34
1
1
1
1
93
62
62
20
20
6.5
4.3
4.3
1.4
1.4
6.54
5.37
5.37
5.37
5.37
29.60
9.09
17.97
15.28
15.28
6.83
6.83
6.67
13.03
22
22
1.5
1.5
9.09
8.49
3.03
5.45
13.03
18.19
7.03
11.15
7
7
3
3
3
3
1
1
1
2
1
1
17
30
29
9
9
2
4
2
2
7
7
1
16
15
1
Common Avionics- Page 27
Portion of Altair C&DH MEL
7/25/2012
100
101
102
103
104
105
Distributed Control Unit (DCU); DM Reaction Control System (RCS) Monitor/Driver # 4
HUB-6U
P-6U-CH8T6H32DA; Propulsion driver, heater, telemetry card
P-6U-CH8T6H32DA; Propulsion driver, heater, telemetry card
S-6U-CH16; Power switched service card
DCU internal cable harness
Enclosure end plates
106
107
108
109
110
111
Distributed Control Unit (DCU); DM Pyrotechnics Drive, Prime
HUB-6U
I-6U-CH7N
I-6U-CH7N
I-6U-CH7N
DCU internal cable harness
Enclosure end plates
112
113
114
115
116
117
Distributed Control Unit (DCU); DM Pyrotechnics Drive, Redundant
HUB-6U
I-6U-CH7N
I-6U-CH7N
I-6U-CH7N
DCU internal cable harness
Enclosure end plates
118
119
120
121
Distributed Control Unit (DCU); AL, ECLSS Monitor
HUB-6U
E-6U-CH18D4H32DA; ECLSS driver, heater, status card
DCU internal cable harness
Enclosure end plates
122
123
124
125
Flight Computer; AM, # 1
HUB-6U
CDH-6U-SBC
DCU internal cable harness
Enclosure end plates
Common Avionics- Page 28
LCRD Example
7/25/2012
Common Avionics- Page 29
Building Blocks Used on LCRD
• Three building block elements initially developed
– Reprogrammable Digital board
– Analog board
– Memory board
• Schematics developed initially under constellation funding
• Layout and reviews done under LCRD funding
• Boards can be interconnected within modules to form different
functional modules
– HUB – Digital board and Analog board
– Data Processing Storage Unit (DPSU) – Digital board and Memory board
– Channel Coding Output Buffer (CCOB) – 2 Digital boards
• Approach allowed different combinations of boards and
modules to be traded to match performance requirements
– Allowed board development to continue as system changed
7/25/2012
Common Avionics- Page 30
LCRD Application of Building Blocks
•
Data Processing and Storage
Unit (DPSU)
– Stores high rate data for Payload
CE1
operational modes
– Supports store and forward function
– Provides T&C interfaces to CEs
through SpaceWire
•
Channel Coding and Output
Buffer (CCOB) (2)
– Multi-rate gigabit non-blocking,
crossbar switch to internal/external
functional elements (DPSU, CCOB
and Integrated Modems)
– Performs Forward Error Correction
(FEC) decode/encode based on
Integrated Modem operational
mode
– Provides translation of frame format
and data link buffering to switch
– Performs channel data
interleave/de-interleave function
7/25/2012
HSE
SpW1
SpW2
SpW1
CE2
DPSU
SpW2
CCOB 1
CCOB
2
Integrated
Modem 1
Integrated
Modem 2
Common Avionics- Page 31
Digital Board Layout
7/25/2012
Common Avionics- Page 32
SpaceAGE Bus
5V/15W DC/DC
64Gb
Flash
64Gb
Flash
64Gb
Flash
64Gb
Flash
64Gb
Flash
64Gb
Flash
64Gb
Flash
2.5V
ULDO
64Gb
Flash
Samtec
SpaceAGE Bus
64Gb
Flash
64Gb
Flash
64Gb
Flash
64Gb
Flash
64Gb
Flash
64Gb
Flash
64Gb
Flash
64Gb
Flash
64Gb
Flash
64Gb
Flash
64Gb
Flash
64Gb
Flash
64Gb
Flash
64Gb
Flash
PHY
64Gb
Flash
64Gb
Flash
64Gb
Flash
PHY
64Gb
Flash
64Gb
Flash
64Gb
Flash
64Gb
Flash
64Gb
Flash
64Gb
Flash
Expansion Connector A
Expansion Connector B
64Gb
Flash
64Gb
Flash
64Gb
Flash
SpWx2
1.5V
POL
MWDM
-9S
3.3V
POL
MWDM
-9S
SerDes
Actel FPGA
RTAX4000S
CCGA1272
64Gb
Flash
64Gb
Flash
64Gb
Flash
64Gb
Flash
64Gb
Flash
64Gb
Flash
MWDM-51P
33uF
75V
7/25/2012
SerDes
Debug Conn.
Relay
FET
Samtec
Sabritec
Card’s Back
Samtec
Relay
FET
Buffers
Sabritec
Layout of Memory Module
2Tbits of user space
Card’s Front
Common Avionics- Page 33
LCRD High Speed Electronics (HSE) Mechanical
7/25/2012
Common Avionics- Page 34
End – Thank you
7/25/2012
Common Avionics- Page 35
C&DH – Single String
(LRO Mapping using LCRD elements)
External
Analog
Tlm
Module
Instrument A I/F
Comm
Module
SSR
Module
Instrument B I/F
Instrument C I/F
Comm Module: 2 Digital boards
SSR Module: 1 Digital board & 1 Memory board
Hub Module: 1 Digital board & 1 Analog board
External Analog Tlm Module: New design
Hub
Module
External
Vehicle Control
Bus
Mil-Std 1553b
Legend
SpaceWire
Low rate SpaceWire using Manchester encoding over intra-box interface
Gigabit SpaceWire 2 (SpaceFiber protocol) over intra-box interface
UART I/F
Embedded processor in FPGA
Mil-Std 1553b
7/25/2012
Common Avionics- Page 36
C&DH – Redundant Processor
(LRO Mapping using LCRD elements)
External
Analog
Tlm
Instrument A I/F
Comm
Module
SSR
Module
Instrument B I/F
Instrument C I/F
Hub
Module
Comm Module: 2 Digital boards
SSR Module: 1 Digital board & 1 Memory board
Hub Module: 1 Digital board & 1 Analog board
External Analog Tlm Module: New design
Legend
External
Vehicle Control
Bus
Hub
Module
External
Vehicle Control
Bus
Mil-Std 1553b
SpaceWire
Low rate SpaceWire using Manchester encoding over intra-box interface
Gigabit SpaceWire 2 (SpaceFiber protocol) over intra-box interface
UART I/F
Embedded Self Checking Pairs (SCP); One BC other Monitor on 1553
Mil-Std 1553b; one Hub module BC, other Hub Module Monitor, switchable through
backdoor control over SpaceWire
7/25/2012
Common Avionics- Page 37
Backup
7/25/2012
Common Avionics- Page 38
SpaceAge Bus – Electrical
7/25/2012
Common Avionics- Page 39
Power - Single Voltage Distribution
Node
Module
Node
Module
Node
Module
*EMI
Filter
Power In
Node
Module
Node
Module
Hub
Module
Node
Module
Node
Module
Legend
Non-Digital Power and Return, Redundant Pair (LCRD implementation used primary power)
Power Switch
*
7/25/2012
Power conversion could also be done here (LCRD does not)
Common Avionics- Page 40
Communications - Serial Full Duplex
Node
Module
Node
Module
Node
Module
*X-Bar
Switch
External
Vehicle Control
Bus
Node
Module
Node
Module
Hub
Module
Node
Module
Node
Module
Legend
2 uni-directional differential pairs, i.e., need to encode data & clock on same pair
*
7/25/2012
Non-Blocking, protocol agnostic – multiple different protocols may be bridged via switch
(LCRD uses SpaceWire 2 – new multi-Gigabit version of SpaceWire)
Common Avionics- Page 41
Processing
Node
Module
Node
Module
Node
Module
External
Vehicle Control
Bus
Node
Module
Node
Module
Hub
Module
Node
Module
Node
Module
Legend
2 uni-directional differential pairs, used for communicating with Nodes
Processing, implementation not specified (could be embedded in FPGA)
7/25/2012
Common Avionics- Page 42
Analog Telemetry Gathering
Node
Module
Node
Module
Node
Module
In
ADC
Out
I0
I1
Ana
Mux
Out
HUB Internal
Analog Tlm
Node
Module
Node
Module
Hub
Module
Sel
Node
Module
Node
Module
Legend
1 Analog signal and ground pair
7/25/2012
Common Avionics- Page 43
Clock Distribution
Node
Module
Node
Module
Node
Module
Clock
Gen
Node
Module
Node
Module
Hub
Module
Node
Module
Node
Module
Legend
Differential pair, Node defined, may be different between nodes.
Multiple uses - could be 1 Hz pulse, etc.
7/25/2012
Common Avionics- Page 44
Reset Distribution
Node
Module
Node
Module
Node
Module
Reset
Gen
Node
Module
Node
Module
Hub
Module
Node
Module
Node
Module
Legend
Signal and Return (Return shared with “Sense” signal),
Node defined electrical and protocol
7/25/2012
Common Avionics- Page 45
Node Presence “Sense”
Node
Module
Node
Module
Node
Module
Sense
Detect
Node
Module
Node
Module
Hub
Module
Node
Module
Node
Module
Legend
Signal and Return (Return shared with “Sense” signal),
Allows hot-plugability of Node
7/25/2012
Common Avionics- Page 46
Nodes “Converter Sync” Signal
Node
Module
Node
Module
Node
Module
Converter
Sync
Node
Module
Node
Module
Hub
Module
Node
Module
Node
Module
Legend
Signal and Return same as Power Return,
Used to reduce EMI by synchronizing switching converters on each Node
7/25/2012
Common Avionics- Page 47
SpaceAge Bus – Mechanical
7/25/2012
Common Avionics- Page 48
Assembled System View
(Modules with EMI Shields)
7/25/2012
Common Avionics- Page 49
Transparent View
(Modules without EMI Shields)
7/25/2012
Common Avionics- Page 50
L-Bracket (Front – Module Side)
7/25/2012
Common Avionics- Page 51
L-Bracket (Back – Harness Side)
7/25/2012
Common Avionics- Page 52
Suggested Cross Section View for HUB
Enclosure
7/25/2012
Common Avionics- Page 53
Suggested HUB Architecture (Digital Section)
+1.0Van
+1.2Van
+2.5V
MOSFET
Switches
16MB
2x16MB
SRAM
SRAM
w/EDAC
w/EDAC
HUB
Internal
Voltage
Telemetry
+1.8V
+1.5V
Converters
+1.0V
+3.3
256MB
SDRAM
w/EDAC
Bank 3
+28Vret
Peer HUB and ID Sense
System
Clock
SerDes
FPGA Supervisor:
Actel AX2000 or AX4000
with built-in IP cores for:
CPU, SpW, NVRAM
programmer, etc.
32b Local Bus
Node Plug-in Sense
Expansion
Port B
GSE
Connector
2 Ports
Flexible Debug
Communications:
UART,10M Ethernet
(Can be also used as
S/C General Purpose
Communication ports)
Memory Bus
(8bits+addr)
A) Xilinx Configuration,
B) Xilinx CPU ROM,
C) Scratchpad RAM
2 banks x 8MB
Selectable:
MIL-STD-1553B, or
Dual RS-485 I/F
External
LVDS
S/C Communications
Peer Hub Communications
Node Reset Control
(Through Analog Card)
Node Power Control
(Through Analog Card)
Interface
Ports A&B
32b
Debug Setup
Xilinx Virtex-5
FPGA
Bank 1: main
Bank 2: auxiliary
SpWire
2 Ports
Expansion
Port A
JTAG 1
32b
JTAG 2
Serial_Comm
POR
Reprogrammable
NV Memory w/EDAC:
w/ CRC Check
Node Clock
Functions:
2 HUBS
a) Full Duplex I/F
b) Clock Exchange Redundant X-over
c) Mutual Reset
3.3V Converter
Synchronization
+3.3
256MB
SDRAM
w/EDAC
Bank 4
Configuration
8b Slave Bus
SerDes
LVDS
Clock
7/25/2012
< 20W
+28V
1553/RS-485
Ports
256MB
SDRAM
w/EDAC
Bank 2
Serial_Comm
Front side
S/C
Interfaces
(4 ports)
Digital
GND
On-board
Isolated
28V Power
Converter
+3.3
256MB
SDRAM
w/EDAC
Bank 1
Back side
Node
Interfaces
(7 ports)
+5.0V
Local
Digital
Domain
DC/DC
Analog TLM and TLM Control
External
LVDS
(Through Analog Card)
Common Avionics- Page 54
Suggested HUB Architecture (Analog TLM & Power)
7/25/2012
Common Avionics- Page 55
SpaceAGE Bus Signal Assignments
Sub
Group
Hub to Hub
7/25/2012
Function
Serial
Communication
Digital
Clock and
Analog IF
Power Supply
Power
and
Analog
Reset, Node
Sense and
DC/DC Sync
Cross
Communication
Digital
Cross Clock
Crossover Bus
(4 inserts for an extra Hub)
Hub to Node Bus (28 inserts out of 32 for 7 Nodes)
Group
Cross Reset
Reset
and
Config
Mster-Slave
Configuration
and Peer Hub
Plug-in
Pin
Node Bus
Connector
Flow
Direction
Hub Bus
Connector
1
TX+
←
RX+
2
RX+
→
TX+
3
TX−
←
RX−
4
RX−
→
TX−
1
Clock_in+
←
Clock_out+
2
Analog_out+
→
Analog_in+
3
Clock_in−
←
Clock_out−
4
Analog_out-
→
Analog_in-
1
Node Power
←
Node Power
2
Node Power
←
Node Power
3
Power Return
→
Power Return
4
Power Return
→
Power Return
1
Reset_in
←
Reset_out
2
HUB GND
←
HUB GND
3
Sense_out
→
Sense_in
4
Converter sync
←
Converter sync
Flow
Direction
Redundant Hub
Notes
Full Duplex link.
Diagonal pins 1-3 and 2-4
provide 100Ω impedance
Clock function is defined
by Node end user
Node may have extra active
analog telemetry, or 1
linear AD590 thermsitor;
Up to 3A@18V of derated
Node current;
DC/DC Sync is 200-800KHZ
free running 5V clock;
Hub generated Power Fail
Optoisolated "Reset" from
Hub and DC converter Sync;
"Sense" tells Hub if Node is
plugged in and secured
1
X_TX+
X_TX+
2
X_Clock_out+
X_Clock_out+
3
X_TX−
X_TX−
4
X_Clock_out-
X_Clock_out-
1
X_RX+
X_RX+
2
X_Clock_in+
X_Clock_in+
3
X_RX−
X_RX−
4
X_Clock_in-
X_Clock_in-
1
X_Reset_out+
X_Reset_out+
2
Peer_Hub out
Peer_Hub out
3
X_Reset_out−
X_Reset_out−
4
Config_out
Config_out
1
X_Reset_in+
X_Reset_in+
2
Case GND
Case GND
3
X_Reset_in−
X_Reset_in−
4
Case GND
Case GND
Full Duplex cross link.
Diagonal pins 1-3 and 2-4
provide 100Ω impedance
Allows both Hubs to share
common clock
X_Reset allows each Hub to
reset its peer Hub either by
command, or by lack of
communications for the
TBD time period
Peer_Hub tells each Hub
that its Peer Hub is in
Master Hub (A) - no jumper,
Slave (B) - external jumper
Common Avionics- Page 56
Example RIU - AL ECLSS Monitor
7
Harness Mass
(22 wires @
10ft)
15
1
14
AWG 26 TST
7
1.5 kg
Power
(W)
2
1
1
Mass
(Kg)
1
1
AWG 26 TSP
1
C&DH Wiring 22 AWG
AWG 22 TSP
3
RPM
3
Power
Wiring
Power Services
AWG ??
Power Services
AWG 16 TP
Power Services
AWG 20 TP
7
Serial
7
Network
1
Pl
3
Fl
3
L
7
dP
7
Q
Digital Inputs
O2
NSI
SMD
Analog Inputs
P
HUB-6U
E-6U-CH18D4H32DA
3
FET
T
Type
VD
2 FET
RD
H
Sw Serv
1 FET
VS
Name
TOTALS
Controller & PS
ECLSS
Internal Harness
End Caps (2 ea)
RPC
Relay
Con RPC
3.13
1.07
1.07
0.45
0.54
7.03
4.80
2.23
ATCS
C&DH
High pressure O2 control
PLSS
7/25/2012
10" x 3.5” x 6.5" (L x W x H)
L x W = mounting surface
(includes 0.75” flange)
W x H = connector face
ECLSS
End Cap
ECLSS
Size:
End Cap
Functional
Description:
Power Supply &
Controller
E-ACH18D4H32DA
ATCS
C&T
Power
GN&C
Mech
Prop
Structure
Common Avionics- Page 57
DM Functions per Quadrant
4
1
4/1U
1U
1/2U
LO2 Tank
LH2 Tank
LO2 Tank
LH2 Tank
Radiator
Porch Light
Radiator
NTO Tank
Antenna, Whip,
EVA
MMH Drain
Tank
Radiator
2/3L
Active Thermal
Control
2U
2/3U
3U
3/4U
4U
LO2 Tank
LH2 Tank
LO2 Tank
LH2 Tank
RCS Valves
MMH Tank
Radiator
Power
Distribution Unit
Fuel Cell
Ancillaries
C&T Radio
C&DH
C&T
ECLSS
3
Electrical Power
2
4/1L
1L
1/2L
2L
Survival Heater
He Tank (LO2
Press.)
Landing Gear
Mechanisms*
Electronics,
Radar, Pri.
Landing Gear
Mechanisms*
Terrain Hazard
Detection
GN&C
Mechanisms
Propulsion
Unknown/
Undetermined
Radar Antenna
Landing Gear
Mechanisms*
3L
3/4L
4L
He Tank (LH2
Press.)
Landing Gear
Mechanisms*
Fuel Cell
Hydrogen Tank
Regulator Pkg,
Pneumatic Ctrl.
Electronics,
Radar, Sec.
Inter-loop Heat
Exchanger
Remote
Multiplexer Unit
Pump &
Accumulator
Bus Repeaters
(2)
H2O Tank,
Thermal
Fuel Cell
Stacks (2)
TurboPump
Assembly
U
Main Engine
DME Controller
*Assumed location – Pyros not found on CAD model.
L
7/25/2012
Common Avionics- Page 58
AL Functions per Quadrant
4
1
3
2
Unpressurized Airlock
Active Thermal
Control
4/1
C&DH
1
1/2
2
2/3
3
3/4
4
C&T
High-Pressure
O2 Accumulator
ECLSS
Main Airlock
Hatch
Airlock Hatch/
Tunnel
High-Pressure
O2 System
Electrical Power
GN&C
Pressurized AM
Mechanisms
Propulsion
PDU
Unknown/
Undetermined
Crew Interface
Micro./Speaker
Suit Service Unit
Repeater
EVA Battery
Charger
RMUX
RMUX *
Life Support
System, Pri. (4)
Whip Antenna,
EVA Checkout
Controls Module,
EVA (4)
*Assumption based on location of an RMUX coldplate
7/25/2012
Common Avionics- Page 59
DM Propulsion Functions
Bay 1U
VD
VS
VS(2)
P
T
P
VD(2)
VS
VD(2)
VS
Bay 3U
P
T
VD
VS
LH2
Valves
VS(2)
VD
VS
P
4/1
LO2
Valves
P
Bay 1
VD
VS
P
VS(2)
P
T
VD
VS
P
VD(2)
VS
HeLO2
Vlvs
VD
VS
P
P
T
VS(2)
LO2
Valves
VD(2)
VS
VD(2)
VS
HeLO2
Vlvs
L
Q
P
T
ΔP
Bay 1L
L
Q
P
T
ΔP
4/1
T
ΔP
T
ΔP
VD
VS
VD
VS(2)
VD
VS
LH2
Valves
He
Valves
VD(2)
VS(2)
T
H(2)*
T(2)*
VD
VS
VD
VS(2)
VD(2)
VS
LH2
Valves
H(2)
T(3)
LO2
Valves
VD(4)
VS(9)
P(4)
T(4)
L(2)
Q(2)
ΔP(2)
H(2)
T(3)
VD
VS
P
T
P
VD(2)
VS
LH2 Tank
P
T
VS(2)
VD
VS
LO2
Valves
He Tank
VD(2)
VS(2)
He Valves
VD
VS
P
VS(2)
P
T
VD
VS
P
P
T
VS(2)
VD
VS
P
P
VD(3)
VS(2)
LO2
Vent Vlvs
LO2
Tank
T
ΔP
VD
VS
VD
VS(2)
LH2 Pne
Fill Vlv
VS(2)
T
P
LO2
Valves
LH2
Valves
LO2
Valves
VD(6)
VS(4)
Vent
Valves
L
Q
P
T
ΔP
LH2 Tank
VD
VS
VD
VS(2)
LH2
Valves
L
Q
P
T
ΔP
1/2
T
ΔP
VS(2)
LO2 Valves
VD
VS
P
P
T
Pneumatic
Regulator
VD(2)
VS
VD
VS
VD
VS(2)
VD
VS
L
Q
P
L
Q
P
He Tank
LO2
Tank
LH2
Tank
He Valves
T
H(2)*
T(2)*
P
2/3
T
ΔP
T
ΔP
VD
VS
VD
VS(2)
VD(2)
VS(2)
T
H(2)*
T(2)*
LH2
Tank
VD
VS
VD
VS
P
P
T
VS(2)
L
Q
P
T
ΔP
Bay 2
L
Q
P
LH2
Valves
VD(2)
VS
LO2
Valves
LO2
Valves
T
H(2)*
T(2)*
P
1/2
Bay 2L
VD
VS
VD
VS(2)
HeLH2
Valves
VD(2)
VS(2)
P
L
Q
P
Pneumatic
Regulator
LH2
Valves
HeLH2
Valves
VD
VS
VS(2)
VD
VS
P
P
T
P
LH2
Valves
VD
VS
VD
VS
VD
VS(2)
LO2
Valves
VD
VS
VD
VS
P
VD(2)
VS
VD(9)
VS(8)
P(4)
H(2)
T(3)
VD(2)
VS(8)
L(2)
Q(2)
P(5)
T(5)
ΔP(2)
LH2 Valves
VD(9)
VS(8)
P(4)
H(2)
T(3)
P
VD
VS
P
VD(4)
VS(4)
P(2)
VD(8)
VS(16)
P(6)
T(6)
L(2)
Q(2)
ΔP(2)
VD
VS
P
LH2
Valves
He
Valves
VD
VS
P
LO2 Valves
L
Q
P
VD
VS
LO2
Tank
LH2
Tank
Pneumatic
Regulator
3/4
T
ΔP
T
ΔP
VD
VS
VD
VS(2)
LH2 Tank
LH2
Valves
LH2
Valves
LO2 Valves
L
Q
P
T
ΔP
Bay 4L
HeLH2
Valves
LH2 Valves
VD
VS
VD
VS
VD
VS(2)
LO2
Valves
VD
VS
VD(4)
VS(4)
P(2)
VD(2)
VS(8)
L(2)
Q(2)
P(4)
T(4)
ΔP(2)
VD
VS
P
LH2
Valves
VD(4)
VS(4)
P(2)
LO2
Valves
LH2 Tank
LH2 Tank
VD
VS
VD
VS(2)
LH2 Valves
L
Q
P
T
ΔP
LO2 Tank
VD
VS
VD
VS(2)
VD
VS
P
LH2
Valves
VD
VS
LO2 Tank
LO2 Valves
LO2
Valves
VD
VS
LH2 Valves
LO2 Tank
VD
VS
VD
VS(2)
LO2 Valves
He
Tank
VD(2)
VS(2)
VD(2)
VS(2)
LO2 Tank
He Tank
VD
VS
T
H(2)*
T(2)*
P
LO2 Valves
He Valves
He Tank
DM Descent Main Engine
VD(2)
VS(2)
T
H(2)*
T(2)*
P
VD(4)
VS(4)
P(2)
He
Cooldwn
Vlv
VD
VS(4)
P
Pne LH2
Prestart
Vlvs
VD
VS(2)
P
He
Start Vlv
RPM
T
P(3)
LH2
Pump
VS(2)
Pne LH2
DscRlfBld
Vlv
VS(2)
Pne LH2
IntCldBld
Vlv
He Drain
Valves
VS(2)
Pne LH2
MnSht
Vlv
LH2 Tank
SMD
PI
LH2
Pump
Byp Vlv
LH2
Valves
SMD
PI
LH2
ThrCnt
Vlv
LO2 Tank
SMD
PI
Vent
Valves
VD
VS
VD
VS(2)
P
LO2
Valves
LO2 Pne
Fill Vlv
VD
VS
VD
VS(2)
LO2
Valves
VS(4)
T(2)
P(2)
Pne Fill
Valves
VD
VS(4)
P
Pne LO2
Prestart
Vlvs
RPM
LO2
Pump
VD
VS
VD(4)
VS(18)
PI(4)
T(3)
P(11)
SMD(4)
RPM(2)
He
Pressuriza
tion
MMH Tank
MMH Pyro
Vlv
L
Could not find separate
valves/pumps. Assume
this is all part of the “turbo
pump” assembly in bottom
center
NTO Tank
NTO Pyro
Vlv
MMH
Valves
MMH
Drain Tank
LO2
Cnt Vlv
SMD
PI
P(2)
T
LO2
Valves
VD
VS
LH2
Cvt Vlv
LO2 Tank
P
T
P
DME
T
P
DM RCS Thruster Pod C
1U
T
H
T*
RCS
VD(4)
VS(2)
Bay 2U/3U RCS
H(2)
P(4)
T(5)
T(3)
P(4)
H(2)
T(2)*
LO2
Valves
P
P
L
Q
P
DM RCS Thruster Pod A
VD(4)
VS(2)
VS(2)
VD
VS
VD
VS
P
VS(2)
P
T
VD
VS
P
P
T
VS(2)
VD
VS
P
LH2 Tank
L
Q
P
T
ΔP
T
H(2)*
T(2)*
P
3/4
P
T
VD
VS
LH2
Valves
He Valves
LH2
Vent Vlvs
VD(3)
VS(2)
VD
VS
P
P
T
Bay 2U
LH2
Valves
VD
VS
P
VS(2)
P
T
P
HeLO2
Vlvs
P
VD
VS
VS(2)
Bay 3
VD
VS
Bay 3L
LO2 Tank
VD
VS
VD
VS(2)
VD
VS
LO2
Valves
VD(2)
VS(2)
P
P
VD
VS
P
T
H(2)*
T(2)*
He
Tank
P
VD(8)
VS(7)
P(3)
2/3
LO2
Valves
LH2
Valves
VD
VS
LH2
Valves
VS(2)
VD
VS
LO2 Tank
LO2
Tank
LH2
Tank
VD
VS
P
VD(8)
VS(7)
P(3)
Bay 4
Bay 4U
P
T
VD
VS
LH2
Valves
P
T
P
LH2 Tank
VD
VS
VD
VS(2)
L
Q
P
L
Q
P
LH2
Valves
VD
VS
VS(2)
VD
VS
P
T(2)
H(2)
Q
He
Pressurization
VD(2)
VS
He
Pressuriz
ation
MMH
Tank
VD(4)
VS(2)
H(6)
T(11)
P(6)
He
Pressuriza
tion
MMH Tank
MMH Pyro
Vlv
MMH
Pyro Vlv
T(2)*
H(2)
T(2)*
H(2)
Q
Q
MMH
Tank
VD(2)
VS
MMH
Iso1 Vlv
VD(2)
VS
NTO
Iso1 Vlv
VD(2)
VS
H
T*
P(2)
H
T*
MMH
Iso2 Vlv
VD(8)
VS(4)
P(4)
H(4)
T(5)*
NTO
Iso2 Vlv
H
T*
P(2)
VD(2)
P
T(4)*
H(2)
VD(2)
P
T(4)*
H(2)
A1
A2
3U
T
H
T*
VD(2)
P
T(4)*
H(2)
VD(2)
P
T(4)*
H(2)
A3
VD(8)
P(4)
H(8)
T(16)*
Thruster
Valves
VD(16)
VS(4)
P(8)
H(12)
T(21)
Thruster
Valves
VD(2)
VS
VD(2)
VS
H
T*
MMH
Iso1 Vlv
VD(2)
VS
NTO
Iso1 Vlv
VD(2)
VS
H
T*
P(2)
Thrusters
Thrusters
VD(2)
P
T(4)*
H(2)
VD(2)
P
T(4)*
H(2)
A4
MMH
Iso2 Vlv
NTO
Iso2 Vlv
H
T*
P(2)
C1
C2
VD(8)
VS(4)
P(4)
H(4)
T(5)*
VD(8)
P(4)
H(8)
T(16)*
VD(2)
P
T(4)*
H(2)
VD(2)
P
T(4)*
H(2)
Thruster
Valves
Thrusters
Thruster
Valves
VD(16)
VS(4)
P(8)
H(12)
T(21)
Thrusters
VD(16)
VS(4)
P(8)
H(12)
T(21)
Thrusters
NTO Tank
NTO
Tank
T(2)
H(2)
Q
P
MMH
Tank
P
T(2)
P
P
T(2)
NTO Tank
NTO Pyro
Vlv
NTO Pyro
Vlv
MMH
Valves
MMH
Valves
MMH
Drain Tank
MMH
Drain
Tank
DM RCS Thruster Pod B
DM RCS Thruster Pod D
2U
T
H
T*
VD(2)
VS
VD(2)
VS
VD(2)
VS
NTO
Iso1 Vlv
VD(2)
VS
H
T*
P(2)
VD(2)
P
T(4)*
H(2)
VD(2)
P
T(4)*
H(2)
7/25/2012
H
T*
MMH
Iso2 Vlv
VD(8)
VS(4)
P(4)
H(4)
T(5)*
NTO
Iso2 Vlv
VD(8)
P(4)
H(8)
T(16)*
H
T*
P(2)
B1
B2
VD(2)
P
T(4)*
H(2)
VD(2)
P
T(4)*
H(2)
4U
T
H
T*
MMH
Iso1 Vlv
B3
B4
Thruster
Valves
Thrusters
VD(2)
VS
VD(16)
VS(4)
P(8)
H(12)
T(21)
Thruster
Valves
VD(2)
VS
H
T*
MMH
Iso1 Vlv
VD(2)
VS
NTO
Iso1 Vlv
VD(2)
VS
H
T*
P(2)
Thrusters
VD(2)
P
T(4)*
H(2)
VD(2)
P
T(4)*
H(2)
MMH
Iso2 Vlv
NTO
Iso2 Vlv
H
T*
P(2)
D1
D2
VD(2)
P
T(4)*
H(2)
VD(2)
P
T(4)*
H(2)
VD(8)
VS(4)
P(4)
H(4)
T(5)*
VD(8)
P(4)
H(8)
T(16)*
Thruster
Valves
Thrusters
Thruster
Valves
Common Avionics- Page 60
DM Propulsion Bay 3 Upper/Lower
Bay 3U
VD
VS
VS(2)
P
T
P
P
T
VD
VS
LH2
Valves
VS(2)
VD
VS
P
2/3
LO2
Valves
P
VD
VS
P
Pneumatic
Regulator
VD
VS
P
VD
VS
P
HeLH2
Valves
VD
VS
P
VS(2)
P
T
VD
VS
P
P
T
VS(2)
P
T
VD(2)
VS
Bay 3
VD
VS
P
P
T
VD(2)
VS
VD(2)
VS
L
Q
P
T
ΔP
VD
VS
VD
VS(2)
Bay 3L
L
Q
P
L
Q
P
LO2
Tank
LH2
Tank
2/3
T
ΔP
T
ΔP
VD
VS
VD
VS(2)
LH2
Valves
VD
VS
VD
VS
VD
VS(2)
LO2
Valves
VD
VS
LH2
Valves
LO2 Valves
Pneumatic
Regulator
HeLH2
Valves
VD
VS
P
VD
VS
P
VD
VS
P
VD(2)
VS
LH2 Tank
VD(9)
VS(8)
P(4)
H(2)
T(3)
VD(2)
VS(8)
L(2)
Q(2)
P(5)
T(5)
ΔP(2)
LH2 Valves
VD(9)
VS(8)
P(4)
H(2)
T(3)
LO2 Valves
Pneumatic
Regulator
HeLH2
Valves
VD
VS
LH2 Valves
LH2 Tank
LH2 Valves
L
Q
P
T
ΔP
LO2 Tank
VD
VS
VD
VS(2)
LO2 Valves
T
H(2)*
T(2)*
P
He Tank
LO2 Tank
VD
VS
T
H(2)*
T(2)*
P
LO2 Valves
He Tank
He Valves
VD(2)
VS(2)
T
H(2)*
T(2)*
P
7/25/2012
He
Valves
He
Tank
VD(2)
VS(2)
VD(2)
VS(2)
He Valves
VD(2)
VS(2)
T
H(2)*
T(2)*
P
Common Avionics- Page 61