Transcript Slide 1

Emergence and Applications of RNA Interference Omar Memon, Vandana Sekhar, Varnika Roy, Yizhou Yin, Alison Heffer

University of Maryland, College Park

HISTORY

More than a decade ago, a surprising observation was made in petunias. While trying to deepen the purple color of these flowers, Rich Jorgensen and colleagues introduced a pigment-producing gene under the control of a powerful promoter.

Instead of the expected deep purple color, many of the flowers appeared variegated or even white. This phenomenon was considered to be post transcriptional gene silencing (PTGS), since the expression of both the introduced gene and the homologous endogenous gene was suppressed.

Years later, experiments in Caenorhabditis elegans by Andrew Fire and Craig Mello revealed that injection of either “sense” or “anti-sense” mRNA molecules encoding muscle protein, led to no behavioral changes in the worms. But when they injected sense and antisense RNA together, they observed that the worms displayed peculiar, twitching movements. Similar movements were seen in worms that completely lacked a functioning gene for the muscle protein.

Fire and Mello tested the hypothesis that injection of sense and antisense RNA molecules resulted in the formation of double-stranded RNA (dsRNA). In every experiment, injection of double-stranded RNA carrying a genetic code led to silencing of the gene containing that particular code. From this, they deduced that dsRNA can silence genes and that this RNA interference is specific for the gene whose code matches that of the injected RNA molecule, and that RNA interference can spread between cells and even be inherited.

Fire and Mello published their findings in the journal Nature on February 19, 1998.

Their discovery clarified many confusing and contradictory experimental observations and revealed a natural mechanism for controlling the flow of genetic information. This research awarded them a Nobel prize and heralded the start of a new research field.

MECHANISM

ds RNA virus 1. Introduction of ds RNA in the cell by viral infection or by artificial means using vectors based short hairpin RNA (shRNA) 2 4 miRNA ds DNA 1 8 2. Recognition and processing of long dsRNA by Dicer, an RNase III enzyme shRNA 3 6 7 DICER 3. Duplexes of siRNA of 21-24 nucleotides length formed by Dicer ATP ADP + Pi 5 RISC 4. miRNA are naturally synthesized long ds RNA in the nucleus, which are processed by Drosha enzyme into small pre-miRNA and exported to cytoplasm.

ATP 5. Incorporation of both ADP + Pi synthetic siRNA or RISC activation endogenously expressed miRNA into RNA-induced silencing complex(RISC) Target mRNA 6. Unwinding of duplex siRNA by a helicase in RISC and removal of passenger strand (RISC activation) Degraded target mRNA 7. Recruitment of RISC along with antisense strand to target mRNA 8. Cleavage of target mRNA by an unidentified RNase (Slicer) within RISC. Degrades mRNA at sites not bound by siRNA

APPLICATIONS

Functional Genomics

Different from classical forward genetics, RNAi is a very powerful technique to investigate gene function in the reverse genetics way. Because of its convenience, high efficiency and economy, it is ideal for analyzing the functions of large numbers of genes and whole genome-wide screens. Based on the completion of sequencing of several organisms and the development of techniques such as cell microarrays, high throughput RNAi screen is an invaluable tool for functional genomics in a wide range of different species.

Step 1 Choose organisms or cell lines

N.benthamiana C.elegans D.melagonaster

Use of RNAi in genome-wide screening

Step 2 Choose RNAi reagents: Long dsRNA, synthetic siRNA, plasmid or viruses based shRNA Step 3 Screening with some specific paradigm and format

CRITIQUES

Functional genomics Therapeutics RNAi Advantages

Finding potential therapy targets

Easy study of gene function

Elucidating cellular mechanisms

Analyze many genes at once; RNAi libraries

Knock-downs can show a variety of phenotypes

More specific than most other therapies

Can be used to target many cell and tissue types

Efficiently transfers the gene to its target RNAi Disadvantages

Knock-downs do not completely inhibit gene expression or activity

 

Number of genes targeted at one time limited; RNAi overload RNAi doesn’t always work

Difficult to deliver siRNA to the target

Side effect of activating the interferon response (IR)

siRNA stability is a concern for effective therapy

Concern that the siRNA might interfere with natural RNAi mechanisms in the cell

May bind non-specifically to some tissues The research conducted over past few years has shown the promising potential of RNAi.

This powerful genetic tool has been used to a certain level of success in both proteomics and drug therapy. Though both will continue to be active fields of scientific research, the drawbacks must also be considered (Table 1).

Table 1. Advantages and disadvantages of using RNAi in two applications

Arabidopsis Mouse Human Step 4 Read out and analyze results, microarray can be imaged or stained Large-scale RNAi screens have been done:

About 90% genes on C.elegans chromosome III for several basic cellular processes,

Screen on C.elegans chromosome I for embryonic lethal genes,

Functional screen for RNAi itself in C.elegans Meanwhile, high-throughput screens and RNAi libraries have proved to be very useful to therapeutic research

Disease Therapy

Wide therapeutic applications of siRNA are the new sensation in the biotechnology drug world. Major traditional drug targets have been proteins (enzymes and receptors), which are targeted at the post translational level. But siRNA drug selectively silences a disease causing gene, at the post transcriptional level itself. Side-effects are decreased by targeting a disease inducing gene in which genetic polymorphisms distinguish it from the RNA of wild type alleles.

Unlike the antisense approach, dsRNA employs a normal cellular process thus it is more specific and allows a cell-cell spreading of the gene silencing effect. The knockdown of the target gene by RNAi is heritable and stable.

Taking RNAi from Bench to Bedside- First Trial Treating Age Related Macular Degeneration

DELIVERY OF DRUG Local intravitreal injection of siRNA (100 800µg) per eye diluted in phosphate buffer saline) siRNA duplex IN VIVO MECHANISM RISC activation VEGF target recognized Target cleaved PHENOTYPIC EFFECT SIRNA-027 Target = VEGFR-1 The biggest problem with the use of RNAi is its successful delivery to the target.

RNAi must be stable in a cell for prolonged activity without getting degraded.

Non specific interactions can occur because, though siRNA can be designed to target a specific sequence, a difference in one or two base-pairs is sufficient to cause off-target binding.

Table 2. Different delivery methods of RNAi and the advantages and disadvantages of each

Viral Non viral

Delivery system Retrovirus Lentivirus Adenovirus Chemically modified siRNA Liposomes Naked siRNA Major characteristics

Promising results in cancer therapy through in vitro cell studies

Related to retroviruses; eliminate some disadvantages

Effective in targeting genes in the brains of Alzheimer’s patients

Vector based on adeno associated viruses

Can target tumors

For transient expression

Balances stability of siRNA without influencing RNAi mechanisms

Modifications: locked nucleic acids (LNA), phosphothioates (PS), 2’ modifications to ribose

siRNA packaged into an envelope with a signal for target cells

Applies to non-dividing cells

Virus can be specific for recognizing one type of tissue

Good for carrying larger genes

Small risk of host genome integration since replication occurs outside of the nucleus

Stability of siRNA is increased

More specific targeting

Easy to obtain

Targets many different types of organs

siRNA is injected directly into the organism

  

Advantages Very efficient Genes are passed on during mitosis Accomplished with relatively little work

  

Disadvantages

Gene is integrated into the genome; risk of mutagenesis

Only for dividing cells

Can only target specific areas; no systemic applications

Risk of mutagenesis Since the DNA is outside of the nucleus, it is less stable and can be lost after many cell divisions

No in vivo studies on

many modified RNAs 5’ modifications might interfere with silencing

Bulky modifications may hinder RNA unwinding Non-specific targeting Liposome electric charge on may interfere with tissue uptake

Encounters RNAses in serum

Delivery to non-specific sites

SUMMARY

RNAi is a powerful and attractive genetic approach because of the diversity of its applications. The potential uses currently in progress include the identification of specific gene functions in living systems and creation of genome wide screens.

Development of antiviral and anticancer therapies are broadening the horizons of the therapeutic arena.

Another value of RNAi screens is in combining it with other functional genomic assays enabling mapping of biochemical pathways. Impact of RNAi is also being extended to the field of agriculture for example by increasing disease resistance in plants.

Many potential obstacles in the path of RNAi therapeutics can be overcome, but further insight into the non-coding functions of RNA in vivo will provide better understanding of mechanisms underlying RNAi. Future applications of RNAi technology will revolutionize genetic, genomic and proteomic aspects of biology and will take the field of medicine into new scientific realms.

Ocular angiogenesis Reduced Dose dependent Improvement of Vision ONCOGENESIS

siRNA drugs directly target cancer promoting genes

Chemotherapeutic avoidance of tumors is decreased by targeting clusterin (antiapoptotic gene).

Ex:-Imatinib drug for Philadelphia chromosome target BCR-ABL fusion protein causes chronic myelogenous leukemia

Common RNAi Targeted Diseases

NEURODEGENERATIVE DISEASES

RNAi is an important process in normal neuronal function

Its manipulation is important for treating many untreatable neurological disorders

Ex:-Mouse models for Alzheimer's disease, DYT1 dystonia, and polyglutamine disease in progress VIRAL DISEASES

Targets are viral and host genes that are essential for entry of the virus

Hepatitis B and C, Influenza and HIV are common targets

Ex:- Silencing of the HIV chemokine receptor (CCR5) by RNAi therapy is under trial by Benetic and City of Hope company

REFERENCES

Bantounas I, Phylactou L, and Uney J. 2004. RNA interference and the use of small interfering RNA to study gene function in mammalian systems.

J. Mol. Endo

. 33: 545-57. Beal J, 2005, Silence is golden: can RNA interferance therapeutics deliver?, Drug Discovery Today, 10 (3), 169-172 Bargmann C I, 2001. High-throughput reverse genetics: RNAi screens in Caenorhabditis elegans

Genome Biology

, 2(2): 1005.1-1005.3

Caenorhabditis elegans

experimental illustration: Annika Rohl Echeverri C J, Perrimon N, 2006.High throughput RNAi screening in cultured cells: a user’s guide ,

Nature Reviews Genetics

, (7), 373-384 Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, and Mello CC. (1998). Potent and specific genetic interference by double-stranded RNA in

Caenorhabditis elegans

. Nature 391 : 806-811.

Jorgensen RA, Cluster PD, English J, Que Q, and Napoli CA. (1996) Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant Mol Biol 31 : 957-973.

Leung R K M, Whittaker P A, 2005. RNA interference: from gene silencing to gene specific therapeutics,

Pharmacology and Therapeutics,

107: 222 239 Li C, Parker A, Menocal E, Xiang S, Borodyansky L, and Fruehauf J. 2006. Delivery of RNA interference.

Cell Cycle

. 5(18): 2103-9.

Lieberman J, Song E, Lee S, and Shankar P. 2003. Interfering with disease: opportunities and roadblocks to harnessing RNA interference.

Trends in Mol. Med

. 9(9): 397-403.

Miller V, Paulson H, and Gonzalez-Alegre P. 2005. RNA interference in neuroscience: progress and challenges.

Cellular and Molecular Neurobiology

. 25(8): 1195-1207.

Shuey D L, Mc Callus D E and Giordano T, 2002. RNAi: gene-silencing in therapeutic intervention,

Drug Discovery Today

, 7(20): 1040-1046 Sonnichsen B,

et al.

Full-genome RNAi profiling of early embryogenesis in

Caenorhabditis elegans

, (2005),

Nature

Vol 434(24), 460-469 Stevenson M, 2002. Therapeutic Potential of RNA Interference,

The New England Journal of Medicine,

Tuschl T, 2003.Functional genomics RNA sets the standard,

Nature

Vol.421 16 January, 220-221 351(17), 1772-1777 Wheeler D B, Carpenter A E, Sabatini D M, 2005.

Cell microarrays and RNA interference chip away at gene function

, Nature Genetics Supplement, (37) 25-30 Whelan Jo, 2005. First Clinical data on RNAi,

Drug Discovery Today,

10(15), 1014-1015 Poster: RNA Silencing, (2005)

Science

309, 1518