Transcript Document
Plane sudden expansion flows of viscoelastic liquids: effect of expansion ratio Robert J Poole Department of Engineering, University of Liverpool, UK Manuel A Alves CEFT, Faculdade de Engenharia, Universidade do Porto, Portugal Paulo J Oliveira Departamento de Engenharia Electromecânica, Universidade da Beira Interior, Portugal Fernando T Pinho aCEFT, Faculdade de Engenharia, Universidade do Porto, Portugal do Minho, Portugal bUniversidade AERC 2007 4th Annual European Rheology Conference April 12-14, Napoli - Italy Outline • Introduction • Governing equations • Numerical method / grid dependency issues • Newtonian results • UCM simulations: “High” ER followed by “Low” ER • Conclusions AERC 2007 4th Annual European Rheology Conference April 12-14, Napoli - Italy Introduction Why investigate expansion flows of viscoelastic liquids? Prevailing view….vortex suppressed by elasticity and totally eliminated at “high” Deborah Not the whole story (AERC 2006 Poole et al, JNNFM 2007 to appear) UCM/Oldroyd-B (β = 1/9) simulations, 1:3 expansion ratio, creeping flow • Maximum obtainable De ≈ 1 • Effect of elasticity is to reduce but not eliminate recirculation • Enhanced pressure drop observed AERC 2007 4th Annual European Rheology Conference April 12-14, Napoli - Italy Governing equations u 0 1) Mass 2) Momentum (creeping flow) 3) Constitutive equation 0 p τ Upper Convected Maxwell model (UCM) τ uτ τ u uT τ u uT τ t Essentially phenomenological model • “Simplest” viscoelastic differential model • Capable of capturing qualitative features of many highly-elastic flows AERC 2007 4th Annual European Rheology Conference April 12-14, Napoli - Italy Numerical method 1) Finite-volume method (Oliveira et al (1998), Oliveira & Pinho (1999)) 2) Structured, collocated and non-orthogonal meshes 3) Discretization (formally second order) Diffusive terms: central differences (CDS) Convective terms: CUBISTA (Alves et al (2003)) 4) Special formulations for cell-face velocities and stresses AERC 2007 4th Annual European Rheology Conference April 12-14, Napoli - Italy Computational domain and meshes L1= 20d L2= 100d Neumann b.c.s at exit ER=D/d h D d UB Expansion ratios (ER) 1:1.5 1:2 Low ER 1:3 X symmetry axis Y 1:4 1:8 Fully-developed inlet velocity and stress profiles De .U B d AERC 2007 4th Annual European Rheology Conference April 12-14, Napoli - Italy 1:16 1:32 High ER Representative mesh details ER = 1.5 NC DOF (xMIN)/d M1 14 500 87 000 0.005 M2 58 000 348 000 0.0025 NC DOF (xMIN)/d M1 15 000 90 000 0.01 M2 60 000 360 000 0.005 NC DOF (xMIN)/d M1 21 500 129 000 0.01 M2 86 000 516 000 0.005 ER = 4 ER = 16 AERC 2007 4th Annual European Rheology Conference April 12-14, Napoli - Italy Representative grid dependency and numerical accuracy ER and fluid XR# XR (= xR / d) % error M1 M2 Newtonian ER =1.5 0.3300 0.3298 0.3298 0.02% Newtonian ER = 2 0.5915 0.5914 0.5913 0.01% Newtonian ER =4 1.4977 1.4994 1.4999 0.04% Newtonian ER = 16 6.5603 6.5573 6.5562 0.02% De = 1.0 ER =1.5 0.3366 0.3426 0.3447 0.59% De = 1.0 ER =2 0.5528 0.5501 0.5492 0.16% De = 1.0 ER =4 1.2339 1.2303 1.2291 0.12% De = 1.0 ER =16 6.2545 6.2490 6.2471 0.03% #denotes extrapolated value using Richardson’s technique AERC 2007 4th Annual European Rheology Conference April 12-14, Napoli - Italy Newtonian simulations: XR variation with ER 14 Newtonian M1 Newtonian M2 XR = 0.4185 (ER - 1) + 0.2635 X 12 XR (= xr / d) 10 d 8 X 6 4 X 2 X X XX X 0 0 Linear fit to data for ER 4 (R2=1) X 10 ER - 1 20 30 AERC 2007 4th Annual European Rheology Conference April 12-14, Napoli - Italy Newtonian simulations: XR variation with ER 14 2 12 Newtonian M1 Newtonian M2 1.75 XR = 0.4185 (ER - 1) + 0.2635 X 1.5 XR (= xr / d) 10 XR (= xr / d) X Newtonian M1 Newtonian M2 XR = 0.4185 (ER - 1) + 0.2635 X 1.25 8 X 6 X 1 0.75 X 4 0.5 X Deviations from linear fit as ER 1 X 2 X X XX X 0 0 0.25 X 10 ER - 1 20 0X 0 X 30 1 2 ER - 1 AERC 2007 4th Annual European Rheology Conference April 12-14, Napoli - Italy 3 4 Newtonian simulations: XR variation with ER 0.5 0.4 X X X X H X xr / D 0.3 X X 0.2 X 0.1 X 0X 0 10 Newtonian M1 Newtonian M2 XR = 0.4185 (ER - 1) + 0.2635 ER - 1 20 30 AERC 2007 4th Annual European Rheology Conference April 12-14, Napoli - Italy D “High” ER viscoelastic : XR variation with De and ER 14 12 ER = 32 XR (= xr / d) 10 Δ M1 8 X M2 X 6 4 X 2 X 0 0 X X X X X X X X X X X ER = 16 ER = 8 X 0.2 X 0.4 X 0.6 X 0.8 De X 1 ER = 4 1.2 1.4 AERC 2007 4th Annual European Rheology Conference April 12-14, Napoli - Italy Extrapolated 1:4 expansion ratio 1.5X X 1.45 X XR (= xr / d) 1.4 1.35 X 1.3 X 1.25 X 1.2 X 1.15 1.1 0 0.2 ER = 4.0 M1 ER = 4.0 M2 Extrapolated 0.4 0.6 0.8 De 1 1.2 AERC 2007 4th Annual European Rheology Conference April 12-14, Napoli - Italy 1.4 1:4 expansion ratio (M2) De = 1.0 0.0 0.2 0.4 0.6 0.8 AERC 2007 4th Annual European Rheology Conference April 12-14, Napoli - Italy “High” ER viscoelastic : scaling of XR 0.45 0.45 X X X X X X X X X xr / D X X 0.35 X X X 0.3 0.2 0 0.2 0.4 X X X XX X X X X X X X X 0.3 ER =32 ER =16 ER =8 ER =4 0.25 X X X X 0.35 X X 0.4 xr / D X 0.4X 0.25 0.6 0.8 De 1 1.2 1.4 0.2 10 -2 AERC 2007 4th Annual European Rheology Conference April 12-14, Napoli - Italy 10 -1 De / ER 10 0 “Low” ER viscoelastic : XR variation with De and ER 1.2 X 1 ER = 3 X XR (= xr / d) 0.8 0.6X 0.4 X ER = 2 X X X X X X X X X X X X X X ER = 1.5 0.2 0 0 0.2 0.4 0.6 De 0.8 1 AERC 2007 4th Annual European Rheology Conference April 12-14, Napoli - Italy 1:1.5 expansion ratio 1:2 expansion ratio 0.65 0.35 X XR (= xr / d) XR (= xr / d) 0.34 X 0.33X X X X 0.32 X X X 0.6 X X X 0.55 X X X 0.31 0.3 ER = 1.5 0 0.2 0.4 0.6 0.8 1 X ER = 2 0.5 0 0.2 De AERC 2007 4th Annual European Rheology Conference April 12-14, Napoli - Italy 0.4 0.6 De 0.8 1 1:1.5 expansion ratio De = 1.0 0.0 0.1 0.2 0.3 0.4 0.6 0.8 De = 1.0 0.0 0.1 0.2 0.3 0.4 0.6 0.8 AERC 2007 4th Annual European Rheology Conference April 12-14, Napoli - Italy “Low” ER viscoelastic : scaling of XR 0.45 0.45 X X X X X X X xr / D 0.35X X X X ER = 8 X X ER = 4 X 0.4 X ER = 16 ER = 3 X X X 0.25 X 0.2 0 X X 0.2 X X 0.4 X X 0.6 X X ER = 2 X 0.8 De X X ER = 8 X ER = 16 X X X XX X X ER = 4 X X X ER = 3 X X 0.35 X 0.3X X ER = 32 ER = 32 X X xr / D X 0.4X 0.3 X X ER = 2 X X X X X XX 0.25 X ER = 1.5 1 1.2 ER = 1.5 1.4 0.2 10 -2 AERC 2007 4th Annual European Rheology Conference April 12-14, Napoli - Italy X X 10 -1 De / ER X X XX X X 10 0 Maximum De 1.0? 1 2 McKinley et al scaling criterion for onset of purely elastic instabilities: U 11 M crit independent of ER Streamlines at De = 1 for ER = 4, 8 and 16 AERC 2007 4th Annual European Rheology Conference April 12-14, Napoli - Italy Maximum De 1.0? 1 2 McKinley scaling criterion for onset of purely elastic instabilities: XX Streamlines at De = 1 for ER = 4, 8 and 16 AERC 2007 4th Annual European Rheology Conference April 12-14, Napoli - Italy U 11 M crit Conclusions For large expansion ratios ( 8) • In range of De for which steady solutions could be obtained XR decreases with elasticity • Recirculation length normalised with downstream duct height scales with a Deborah number based on bulk velocity at inlet and downstream duct height (De/ER) For small expansion ratios ( 2) • XR initially decreases before increasing at a given level of elasticity (De/ER ~ 0.4) Maximum obtainable De is approximately 1.0: independent of ER AERC 2007 4th Annual European Rheology Conference April 12-14, Napoli - Italy Enhanced pressure drop 1 Pressure UCM M1 UCM M2 UCM M3 OLD B M1 OLD B M2 OLD B M3 0.8 0.6 NEWT -1.5 C 4 0.4 Pressure fd 0.2 0 P P C UCM De=0.8 2 w -3.8 0 0.5 De 1 1.5 4 AERC 2007 4th Annual European Rheology Conference April 12-14, Napoli - Italy ‘2D’ 1: 13.3 Planar Expansion Re < 10 Townsend and Walters (1993) De O(1)? Newtonian 0.15% polyacrylamide solution AERC 2007 4th Annual European Rheology Conference April 12-14, Napoli - Italy Stress variation around sharp corner Frame 002 23 Apr 2006 No Data Set ii / (0U B / d) 10 -2/3 slope XX XY YY 1 r Hinch (1993) JnNFM 10 0 Stresses around sharp corner go to infinity as: r 2 3 10 -1 10-1 100 r/d AERC 2007 4th Annual European Rheology Conference April 12-14, Napoli - Italy Normal stresses (ER = 3) Frame 002 28 Apr 2006 No Data Set Frame 002 23 Apr 2006 No Data Set 1.4 0.2 1.2 0 1 YY / (0U B / d) XX / (0U B / d) -0.2 -0.4 -0.6 Newt (De=0) UCM De=0.2 UCM De=0.4 UCM De=0.6 UCM De=0.8 UCM De=1.0 -0.8 -1 -1.2 Newt (De=0) UCM De=0.2 UCM De=0.4 UCM De=0.6 UCM De=0.8 UCM De=1.0 -2 0 2 4 0.8 0.6 0.4 0.2 0 6 -0.2 -2 x/d AERC 2007 4th Annual European Rheology Conference April 12-14, Napoli - Italy 0 2 x/d 4 6