Transcript Document
Amino acid metabolism
·
Nitrogen balance
Dietary protein
amino acid pool
protein
synthesis
catabolism,
biosynthesis
normal N balance: N ingested = N excreted
negative N balance: N ingested < N excreted
positive N balance: N ingested > N excreted
N excretion (NH4+. urea)
Requirement for essential amino acids
Amino acid catabolism
·
accounts for ~ 10% of energy requirement of adults
·
When:
• ·
excess protein in diet (amino acids are not stored)
• ·
protein degradation exceeds demand for new protein
• ·
starvation when carbohydrates are not available
·
(protein storing seeds such as beans, peas, etc.)
·
Glucogenic vs ketogenic amino acids
·
ketogenic: yield AcCoA or AcAc as end products of
catabolism
- leu, lys
·
glucogenic: are degraded to pyruvate or a member of the
TCA cycle (succinylCoA, OAA, a-ketoglutarate, fumarate).
In absence of sugars, glucogenic amino acids permit
continued oxidation of fatty acids by maintaining TCA
cycle intermediates.
Also source of carbons for gluconeogenesis in liver
- ile, phe, tyr, trp
·
glucogenic and ketogenic: yield both ketogenic and
glucogenic products.
- all others
N catabolism
General strategy:
1
removal of N from amino acid by transamination (generally
first or second step of amino acid catabolic pathways) and
collection of N in glutamic acid
2
deamination of glutamic acid with release of NH4+
-glutamate dehydrogenase
3.
Collection of N in glutamine or alanine for delivery to liver
4
removal of NH4+ by : i. secretion; or ii. conversion to
urea or other less toxic form.
Vitamine B6 family
Pyridoxine
Pyridoxal
Pyridoxamine
to e-amino of lysine
Pyridoxal phosphate
See Horton: page 212
section 7.7 pyridoxal phosphate
1. Transamination reaction
see text p 537 and fig 17.7.
Lys-protein
NH
R1
H- C-NH3+
COO-
+
a-aminoacid-1
Schiff base with enzyme
R1
H-C-COONH
Lys-protein
Schiff base with substrate
R1
H-C-COONH
Lys-protein
Schiff base with substrate
NH2
Lys-protein
R1
+
H- C-
O
COO-
a-ketoacid-1
Pyradoxamine phosphate
NH2
Lys-protein
R2
+
H- C-
O
COO-
a-ketoacid-2
R2
H-C-COONH
Lys-protein
R2
H-C-COO-
NH
Lys-protein
Lys-protein
NH
R2
H- C-NH3+
COO-
a-amino acid-2
+
Net reaction:
a-amino acid-1 + a-ketoacid-2
PLP
a-amino acid-2 + a-ketoacid-1
e.g.
alanine + a-ketoglutarate
pyruvate + glutamate
N catabolism
General strategy:
1
removal of N from amino acid by transamination (generally
first or second step of amino acid catabolic pathways) and
collection of N in glutamic acid
2
deamination of glutamic acid with release of NH4+
-glutamate dehydrogenase
3.
Collection of N in glutamine or alanine for delivery to liver
4
removal of NH4+ by : i. secretion; or ii. conversion to
urea or other less toxic form.
2. glutamate dehydrogenase (see p 533 for reaction)
•
- release or capture of NH4+
·
- located in mitochondria
·
- operates near equilibrium
NAD
NADH
a-ketoglutarate + NH4+
glutamate + H2O
NADP
amino acid + a-ketoglutar
glutamate + NAD + H2O
amino acid + NAD + H2O
NADPH
a-keto acid + glutamate
a-ketoglutar +NADH + H+ + NH4+
a-keto acid +NADH + H+ + NH4+
3. transport of N to the liver
- glutamine synthetase
- glutaminase
- alanine/glucose cycle
1. Glutamine synthetase
ATP
glutamate + NH4
2. Glutaminase
glutamine
ADP + Pi
+
glutamine
glutamate + NH4+
Note: glutamate can be used for glucose synthesis. How?
3.
Formation of alanine by transamination:
alanine/glucose cycle
Alanine-glucose cycle
Muscle
glucose
2 pyruvate
2 a-aa
2 a-ka
2 alanine
2 alanine
glucose
Liver
glucose
2 NH4+
2 pyruvate
2 Glu
2 a-kG
2 alanine
MUSCLE
energy
protein
Glu’NH2
NH4+
a-ka
Pyr
Glu
Glucose
a-aa
a-KG
Ala
Pyr
Ala
a-KG
Glucose
Glu’NH2
Glu
CO2
NH4
LIVER
Glucose
CO2
H2O
Urea
2NH4+
2NH4+
2a-KG
+
2Glu
4CO2
2Glu’NH2
Urea
KIDNEY
H2CO3
HCO3 + H+
Urea cycle
Where:
Liver: mito/cyto
Why: disposal of N
Immediate source of N:
glutamate dehydrogenase
glutaminase
Fate of urea:
liver
kidney
How much: ~ 30g urea / day
urine
Reactions of urea cycle
1. Carbamyl phosphate synthetase I (mito)
NH4+ + HCO3- + 2 ATP
O
H2N-C-OPO3-2 + Pi + 2 ADP
carbamyl phosphate
• committed step
• by N’Ac glutamate
2. Ornithine transcarbamylase (mito)
NH2
CH2
CH2
CH2
CH COONH3+
ornithine
+
NH 2
C O
OPO 3-2
carbamyl
phosphate
Pi
NH2
C O
HN
CH2
CH2
CH2
CH COONH3+
citrulline
3. Arginosuccinate synthetase (cyto)
NH2
C O
HN
CH2
CH2
CH2
CH COO-
COO-
H2N
COO-
+
CH2
CH NH3+
COO-
NH3+
ATP
AMP
+
PPi
C NH
HN
CH2
CH2
CH2
CH COO-
CH
CH2
COO-
NH3+
arginosuccinate
4. Arginosuccinate lyase (cyto)
H2N
C NH
HN
CH2
CH2
CH2
CH COONH3+
COOCH
CH2
COO-
H2 N
C NH2
HN
CH2
CH2
CH2
CH COONH3+
arginine
COO-
+
CH
CH
COO-
fumarate
5. Arginase (cyto)
H2 N
C NH2
HN
CH2
CH2
CH2
CH COONH3+
NH2
CH2
CH2
+
CH2
CH COONH3+
ornithine
NH2
C
NH2
urea
O
NH 2
C O
OPO 3-2
NH3+
2ATP
2ADP +Pi
NH 2
CH 2
CH 2
CH 2
CH COONH 3+
+
ornithine
NH 2
C O
HN
CH 2
CH 2
CH 2
CH COO-
HCO3
NADH + H+
NAD
NH 3+
MITO
C
CYTO
ornithine
NH 2
aKG
citrulline
asparate
glutamate
asparate
glutamate
O
ATP
NH 2
AMP + PPi
H2N
H2 N
C NH 2
HN
CH 2
CH 2
CH 2
CH COO-
C NH
HN
CH2
CH2
CH2
CH COONH3+
NH 3+
fumarate
COOCH
CH 2
COO-
See fig 17.26
Interorgan relationships in N metabolism
Glu’NH2
Several
steps
Epithelial cells
of intestine
cittruline
Glu’NH2
Liver
Kidney
cittruline
Arg
Urea
Urea
cycle
Ornithine
2
steps
glutamate
Arginine
Arginine
Several
steps
creatine
To urine
Muscle
creatine
creatinine
P-creatine
Several
steps
Adapted from Devlin,
Biochemistry with Clinical Corrleation