EGS talk 2002 - Colorado State University

Download Report

Transcript EGS talk 2002 - Colorado State University

Critical issues of ensemble data assimilation in
application to GOES-R risk reduction program
D. Zupanski1, M. Zupanski1, M. DeMaria2, and L. Grasso1
1CIRA/Colorado State University, Fort Collins, CO
2NOAA/NESDIS Fort Collins, CO
Ninth Symposium on Integrated Observing and Assimilation Systems
for the Atmosphere, Oceans, and Land Surface
(IOAS-AOLS)
9-13 January 2005
San Diego, CA
Research partially supported by NOAA Grant NA17RJ1228
Dusanka Zupanski, CIRA/CSU
[email protected]
OUTLINE
Critical data assimilation issues related to GOES-R satellite
mission
Ensemble based data assimilation methodology: Maximum
Likelihood Ensemble Filter
Experimental results
Conclusions and future work
Dusanka Zupanski, CIRA/CSU
[email protected]
Critical data assimilation issues of GOES-R and
similar missions
Assimilate satellite observations with high special and
temporal resolution
Employ state-of-the-art non-linear atmospheric models
(without neglecting model errors)
Provide optimal estimate of the atmospheric state
Calculate uncertainty of the optimal estimate
Determine amount of new information given by the
observations
What is the value added of having new observations (e.g.,
GOES-R, CloudSat, GPM) ?
Dusanka Zupanski, CIRA/CSU
[email protected]
METHODOLOGY
Maximum Likelihood Ensemble Filter (MLEF)
(Zupanski 2005; Zupanski and Zupanski 2005)
Developed using ideas from
Variational data assimilation (3DVAR, 4DVAR)
Iterated Kalman Filters
Ensemble Transform Kalman Filter (ETKF, Bishop et al. 2001)
MLEF is designed to provide optimal estimates of
model state variables
empirical parameters
model error (bias)
MLEF also calculates uncertainties of all estimates (in terms of Pa
and Pf)
Dusanka Zupanski, CIRA/CSU
[email protected]
MLEF APPROACH
Minimize cost function J
1
1
J  [ x  xb ]T Pf-1[ x  xb ]  [ H ( x )  yobs ]T R 1[ H ( x )  yobs ]  min
2
2
Analysis error covariance
Pa1 2  Pf1 2 ( I  C)-1 2
C  PfT 2 H T R1HPf1 2  ( R1 2 HPf1 2 )T ( R1 2 HPf1 2 )
Forecast error covariance
12
f
P
x
M
 [b
f
1
f
2
b
f
Nens
... b
]
bi f  M ( x  bia )  M ( x)
- model state vector of dim Nstate >>Nens
- non-linear forecast model
C - information matrix of dim Nens  Nens
Dusanka Zupanski, CIRA/CSU
[email protected]
EXPERIMENTAL DESIGN
Hurricane Lili case
35 1-h DA cycles: 13UTC 1 Oct 2002 – 00 UTC 3 Oct
CSU-RAMS non-hydrostatic model
30x20x21 grid points, 15 km grid distance (in the Gulf of
Mexico)
Control variable: u,v,w,theta,Exner, r_total (dim=54000)
Model simulated observations with random noise
(7200 obs per DA cycle)
Nens=50
Iterative minimization of J (1 iteration only)
Dusanka Zupanski, CIRA/CSU
[email protected]
Experimental design (continued)
21 UTC 2 Oct 2002
Cycle 33
Cycle 1 Cycle 2
13 UTC
14 UTC
00 UTC
1 Oct 2002
2 Oct 2002
3 Oct 2002
RMS analysis error
(analysis-truth)
RMS analysis error
(analysis-truth)
8.00E-01
8.00E-04
rms_u
rms_u_noobs
6.00E-01
6.00E-04
RMS
RMS (m/s)
Cycle 35
4.00E-01
2.00E-01
4.00E-04
rms_r_total
rms_r_total_noobs
2.00E-04
0.00E+00
0.00E+00
1
11
Cycle No.
21
31
1
11
Cycle No.
21
31
Dusanka Zupanski, CIRA/CSU
[email protected]
Experimental design (continued)
Split cycle 33 into 24 sub-cycles
Calculate eigenvalues of (I-C) -1/2 in each sub-cycle
(information content)
Information content of each group of observations
Sub-cycles Sub-cycles Sub-cycles Sub-cycles
1-4
5-8
9-12
13-16
1200
u obs
1200
v obs
1200
w obs
1200
Exner obs
Sub-cycles
17-20
Sub-cycles
21-24
1200
theta obs
1200
r_total obs
Dusanka Zupanski, CIRA/CSU
[email protected]
RESULTS
Sub-cycles 1-4
u- obs groups
Eigenvalues (I-C)-1/2
1.00E+00
8.00E-01
sub-cycle 1
6.00E-01
sub-cycle 2
4.00E-01
sub-cycle 3
sub-cycle 4
2.00E-01
0.00E+00
1
11
21
31
41
Eigenvalue rank
System is “learning” about the truth via updating
analysis error covariance.
Dusanka Zupanski, CIRA/CSU
[email protected]
RESULTS
Sub-cycles 5-8
v- obs groups
Eigenvalues (I-C)-1/2
1.00E+00
8.00E-01
sub-cycle 5
6.00E-01
sub-cycle 6
4.00E-01
sub-cycle 7
sub-cycle 8
2.00E-01
0.00E+00
1
11
21
31
41
Eigenvalue rank
Most information in sub-cycles 5 and 6.
Dusanka Zupanski, CIRA/CSU
[email protected]
RESULTS
Sub-cycles 9-12
w- obs groups
Eigenvalues (I-C)-1/2
1.00E+00
8.00E-01
sub-cycle 9
6.00E-01
sub-cycle 10
sub-cycle 11
4.00E-01
sub-cycle 12
2.00E-01
0.00E+00
1
11
21
31
41
Eigenvalue rank
Most information in sub-cycle 10.
Dusanka Zupanski, CIRA/CSU
[email protected]
RESULTS
Sub-cycles 13-16
Exner- obs groups
Eigenvalues (I-C)-1/2
1.0000E+00
9.9995E-01
9.9990E-01
9.9985E-01
9.9980E-01
9.9975E-01
9.9970E-01
sub-cycle 13
sub-cycle 14
sub-cycle 15
sub-cycle 16
1
11
21
31
41
Eigenvalue rank
Dusanka Zupanski, CIRA/CSU
[email protected]
RESULTS
Sub-cycles 17-20
theta- obs groups
Eigenvalues (I-C)-1/2
1.00E+00
9.95E-01
sub-cycle 17
9.90E-01
sub-cycle 18
9.85E-01
sub-cycle 19
9.80E-01
sub-cycle 20
9.75E-01
9.70E-01
1
11
21
31
41
Eigenvalue rank
Dusanka Zupanski, CIRA/CSU
[email protected]
RESULTS
Sub-cycles 21-24
r_total- obs groups
Eigenvalues (I-C)-1/2
1.00E+00
8.00E-01
sub-cycle 21
6.00E-01
sub-cycle 22
sub-cycle 23
4.00E-01
sub-cycle 24
2.00E-01
0.00E+00
1
11
21
31
41
Eigenvalue rank
Sub-cycles with little information can be
excluded  data selection.
Dusanka Zupanski, CIRA/CSU
[email protected]
CONCLUSIONS
Ensemble based data assimilation methods, such as the
MLEF, can be effectively used to quantify impact of each
observation type.
The procedure is applicable to a forecast model of any
complexity. Only eigenvalues of a small size matrix (Nens x
Nens) need to be evaluated.
Data assimilation system has a capability to learn form
observations.
Value added of having new observations (e.g., GOES-R,
CloudSat, GPM) can be quantified applying a similar procedure.
Dusanka Zupanski, CIRA/CSU
[email protected]