Transcript Slide 1
“The Use of Ferrocenyl Ligands in Asymmetric Catalytic Hydrogenation” Beth Moscato-Goodpaster April 12, 2007 1 Utility of Ferrocenyl Ligands Asymmetric Negishi Couplings: Pd (II) R' Zn R R Ph 2P Me2 N H R' Br R' 95% yield 85% ee Fe Aza-Claisen Rearrangements: Ph N Ph MeO CF3 N R O N Ts Pd Cl R R R = H, Me Fe MeO CF3 R R R R N * O 99% yield 99.7% ee AgTFA; proton sponge Weiss, M; et al. Angew. Chem. Int. Ed. 2006, 45, 5694. Genov, M.; et al. Tetrahedron: Asymmetry 2006, 17, 2593 2 Utility of Ferrocenyl Ligands Cu-Catalyzed Conjugate Additions: PCy 2 Fe O R'' MgBr + R PPh 2 R'' R' O R R' CuBr*SMe2 91% yield 98% ee >94:6 regio. Rhodium-Catalyzed Ring Openings: H Me2N N HNR2 + Ph2 P Boc Fe PPh 2 R' R' NMe2 H Rh R' R 2N R' 98% yield >99% ee. HN Boc Lopez, F.; et al. JACS 2004, 126, 12784-12785. Cho, Y.-h.; et al. JACS 2006, 128, 3 6837. Harutyunyan, S. R.; et al. JACS 2006, 128, 9103. Asymmetric Hydrogenation R'' M / L* R' H2 Y R “…hydrogenation is arguably the most important catalytic method in synthetic organic chemistry….” “Of the <20 full-scale chemocatalyzed [asymmetric] reactions known to be running [in industry] currently, more than half are used for reducing various functionalities….” H *Y R H R'' R' Ph2 P P P N Boc (R,R)-Me DuPhos PPh 2 (2S,4S)-BPPM PCy 2 PPh2 PPh2 (R)-BINAP Blaser, H.; et al. Adv. Synth. Catal. 2003, 345, 103-151. Federsel, H. Nat. Rev. Drug Discovery 2005, 4, 685-697. Fe PPh 2 Josiphos 4 General Scope of Hydrogenation R R' COOH AcHN R NHAc R R' OAc R'' COOH R' R R' R R'' R' R''' COOH COOH O Olefins O R N X R Ketones and Imines O R' O O R R'' R' OR'' R' R 5 Blaser, H.; et al. Adv. Synth. Catal. 2003, 345, 103-151. Outline • Features of Ferrocenyl Ligands – why ferrocenes? – reactivity and synthesis – modularity • Applications of Ferrocenyl Ligands to Specific Substrates in Asymmetric Hydrogenation • Conclusions 6 Why Ferrocenes? P R R NHAc Ar NHAc N R R Rh / (R,R)-binaphane + Ar P Ar 1.3 atm H 2 Ar 100% yield NHAc 99% ee M / (R,R)-binaphane NR H2 M = Ru, Ir Xiao, D.; Zhang, X. Angew. Chem. Int. Ed. 2001, 40, 3425-3428. Xiao, D; Zhang, Z.; Zhang, X. Org. Lett. 1999, 1, 1679-1681. 7 Why Ferrocenes? P P (R,R)-binaphane P Fe P •low rotation barrier of ferrocenyl backbone offers flexibility, facilitating binding of sterically demanding imines. • electron donating ability and large P-M-P bite angle increases electron backdonating ability from Ir to an imine substrate. (R,R)-f-binaphane Xiao, D.; Zhang, X. Angew. Chem. Int. Ed. 2001, 40, 3425-3428. Vargas, S.; et al. Tetrahedron Let. 2005, 46, 2049. 8 Why Ferrocenes? MeO MeO N HN Ir / (R,R)-f-binaphane 68 atm H 2 Ar NH 2 CAN MeOH, H 2O Ar Ar 72-75% yield 96-98% ee (R,R)-f-binaphane has unprecedented enantioselectivity! P Fe P (R,R)-f-binaphane Xiao, D.; Zhang, X. Angew. Chem. Int. Ed. 2001, 40, 3425-3428. Vargas, S.; et al. Tetrahedron Let. 2005, 46, 2049. 9 Synthesis of Chiral Ferrocenes: Lithiation Fe NMe2 n-BuLi Me Fe H Me NMe2 H Li + (R,R) - 96% Li Fe NMe2 H Me (R,S) - 4% Stereoselective lithiation results in the synthesis of a single diastereomer. Me NMe2 Fe H Li Me NMe2 n-BuLi TMBDA Fe H Li Me NMe2 ClPPh2 Li Fe H PPh 2 PPh2 NMe2 Me 2 H 1 PPh2 ClPPh2 Me NMe2 Fe H PPh 2 10 Marquarding, D.; et al. JACS 1970, 92, 5389-5393. SN1 Retention of Stereochemistry Fe Me NMe2 H PPh2 Ac 2O Fe Ac Me NMe2 H PPh2 Me H - NMe2 Ac Fe PPh2 Subsequent attack of nucleophile occurs from exo side and proceeds with retention of stereochemistry. Iron center donates electron density to the carbocation, stabilizing and preventing racemization. Nu:Fe Me Nu H PPh2 11 Hayashi, T.; et al. Tetrahedron Let. 1974, 15, 4405. Synthesis of BPPFA Derivatives Me NMe2 Fe 1.) Ac 2O 2.) MeHN Fe PPh2 BPPFA NR 2 Me Me N H PPh2 useful for asymmetric hydrogenation of dehydroamino acids 1.) Ac 2O 2.) n-BuLi 3.) H 2O NR2 H PPh2 PPh2 used for rhodium-catalyzed hydrogenation of tetrasubstituted acrylic acids Fe Me OH H PPh2 BPPFOH PPh2 used for rhodium-catalyzed hydrogenation of prochiral carbonyl compounds Hayashi, T.; Kawamura, N.; Ito, Y. JACS 1987 109, 7876. Hayashi, T; Kawamura, N; Ito, Y. Tetrahedron Let. 1988, 29, 5969-5972 Hayashi, T.; et al. Tetrahedron Let. 1976, 17, 1133-1134 12 Modular Synthesis: Josiphos Fe NMe 21.) n-BuLi H 2.) Ph2 PCl PPh2 NMe 2 HPCy 2 H AcOH Fe Fe PPh 2 PCy2 H Sequential addition of phosphines allows rapid synthesis of a large ligand library with varying steric and electronic properties! Fe Fe Fe P(tBu) 2 PCy 2 H PPh2 PCy 2 H PCy2 PCy 2 H Fe Fe Fe P(tBu)2 PPh2 H PPh 2 PPh2 H PCy2 PPh2 H Fe Fe Fe P(tBu) 2 P(xyl)2 H PPh 2 P(xyl)2 H PCy2 P(xyl)2 H 13 Togni, A.; et al. JACS 1994, 116, 4062-4066. Modular Electronic Effects OH O 1.) Rh / L* BH + 2.) H2 O2 , NaOH O Electronic properties of ligand strongly influence enantioselectivity! CF3 MeO Best results are obtained with: N N P P N N F C P N σ-donating, electron-rich pyrazole nitrogen 3 2 2 2 and strongly π-accepting phosphorous. N Fe Fe Fe The resulting “electronic asymmetry” at the metal center 90% ee enhances enantioselectivity. 95% ee 98.5% ee F3C MeO F3C N 2P F3 C N N N CF3 2P N CF3 2P N Fe Fe Fe 5% ee 33% ee 40% ee Schnyder, A.; Hintermann, L.; Togni, A. Angew. Chem. Int. Ed. 1995, 34, 931-933 14 Outline • Features of Ferrocenyl Ligands • Applications of Ferrocenyl Ligands to Specific Substrates in Asymmetric Hydrogenation – hydrogenation of unprotected enamines – hydrogenation of 2- and 3-substituted indoles – hydrogenation of vinyl boronates – hydrogenation of (S)-Metolachlor • Conclusions 15 Synthesis of Unprotected β-Amino Acids: Catalyst Screening M/L NH 2 O Ph OMe NH2 O 6 atm H2 , 50 C, 18 hrs 2,2,2-trifluoroethanol Ph OMe Ligand Yield ee (S,S)-Me-DuPHOS / Rh 71% 9% (S) (S)-BINAPHANE / Rh 11% 11% (R) (S)-f-BINAPHANE / Rh 77% 10% (S) (R,R)-EtFerroTANE / Rh 77% 88% (R) (R)-(S)-1 / Rh 94% 96% (S) P(tBu) 2 Fe Hsiao, Y.; et al. JACS 2004, 126, 9918-9919. 1 P CF3 2 16 Synthesis of Unprotected β-Amino Acids P(tBu) 2 Rh / Fe P CF3 2 NH 2 O Ar OMe 7.5 atm H 2, 50 C, 6-24 hrs 2,2,2-trifluoroethanol OMe 85-98% yield 93-96% ee NHPh 74-94.0% yield 96-97% ee NH2 O Ar P(tBu) 2 Rh / Fe PPh2 NH 2 O NH2 O Ar NHPh 7.5 atm H2 , 50 C, 8 hrs MeOH Ar 17 Hsiao, Y.; et al. JACS 2004, 126, 9918-9919. Product Inhibition NH 2 O Me NH2 O 1:1 Rh : L NHPh 32 atm H2 Me NHPh NH 2 O Results are consistent with either NH2 aO first1:1 Rh : L Me NHPh order dependence [substrate] OR NH 2 O 32on atm H Me NHPh 2 + 32 mol % Me product NHPh inhibition. Results are consistent with product inhibition! P(tBu) 2 Fe P 18 Hansen, K. B.; et al. Org. Lett. 2005, 7, 4935. CF3 2 Product Inhibition 2 eq Boc2O 1:1 Rh / L NH 2 O + Me NHPh 32 atm H2 Boc NH O Me NHPh P(tBu) 2 Fe P CF3 2 Addition of Boc2O selectively protects the free amine, preventing product inhibition and accelerating the overall reaction. Hansen, K. B.; et al. Org. Lett. 2005, 7, 4935. 19 Synthesis of β-Amino Acid Pharmacophore F F COOH 1.) 1,1'-carbonyldiimidazole, CH 3CN 2.) methyl potassium malonate, Et3 N, MgCl2 F F O F F F F Boc2 O COOMe + NH 2 F F NH 4OAc MeOH, reflux COOMe 0.6 mol % Rh / L* 7 atm H 2, MeOH COOMe HN F Boc F 75% yield >97% ee Me Fe Kubryk, M.; Hansen, K. Tetrahedron: Asymmetry 2006, 17, 205-209. P(t-Bu) 2 PPh2 20 Hydrogenation of Indoles Bu N Ac Ph2 P N Boc PPh 2 (2S,4S)-BPPM PPh2 PPh2 (R)-BINAP PPh2 1 mol % Rh(acac)(cod) / L* Bu N Ac 50 atm H2 , iPrOH, 60 C, 2 hrs Ligand Yield ee (R)-BINAP 100% 1% (S) (2S,3S)-Chiraphos 100% 1% (S) (R)-(S) BPPFA 100% 0% (-)-(2R,3R)-DIOP 100% 0% (R,R)-Me-DuPhos 100% 0% (2S,4S)-BPPM 100% 0% (S,S)-(R,R)-PhTRAP 77% 85% (R) PPh2 PPh2 O O H (2R,3R)-DIOP Me2 N Me Fe PPh 2 PPh2 (R)-(S)-BPPFA PPh 2 PPh 2 H PPh 2 (2S,3S)-Chiraphos (S,S)-(R,R)-PhTRAP 21 Kuwano, R.; et al. Tetrahedron: Asymmetry. 2006, 17, 521-535. Hydrogenation of 2-Substituted Indoles Hydrogenation of 2-substituted indoles proceeds smoothly ... R N Ac 1:1 Rh : L 10 mol % Cs2 CO3 50 atm H2 , 60 C, 1-2 hrs R N Ac 83-98% yield 87-95% ee ... but hydrogenation of 3-substituted indoles mostly results in hydrolysis of the protected carbamide. Me Me Me 1:1 Rh : L 10 mol % Cs 2 CO3 PPh2 N Ac 100 atm H 2, 60 C, 2 hrs H N Ac 37% yield 86% ee N H 55% yield H PPh 2 (S,S)-(R,R)-PhTRAP Kuwano, R.; et al. JACS 2000, 122, 7614-7615. 22 Hydrogenation of 3-Substituted Indoles R R 1:1 Rh : L* 10 mol % Cs2CO3 N Ts 50 atm H2, 80 C, 24 hrs 71-94% yield 95-98% ee N Ts R Yield ee i-Pr 94% 97% Ph 93% 96% CH2CH2OTBS 94% 98% CH2CH2CO2(t-Bu) 93% 97% CH2CH2NHBoc 71% 95% PPh2 H H PPh 2 (S,S)-(R,R)-PhTRAP Kuwano, R.; et al. Org. Lett. 2004, 6, 2213.. 23 Hydrogenation of N-Boc Protected Indoles (R') R N Boc 1:1 Ru / PhTRAP 10 mol % Cs 2CO3 (R') R N Boc 50 atm H 2, 60 C, 2-48 hrs R R 1:1 Ru / PhTRAP 10 mol % Cs2 CO 3 N Boc N Boc 50 atm H 2, 40 C, 24 hrs 85-92% yield 87-94% ee Me Me Me N Boc 91-99% yield 87-95% ee 1:1 Ru / PhTRAP 10 mol % NEt3 50 atm H 2, 80 C, 72 hrs 59% yield 72% ee Me N Boc PPh2 H H PPh 2 Kuwano, R.; Kashiwabara, M. Org. Lett. 2006, 8, 2653-2655. (S,S)-(R,R)-PhTRAP 24 Hydrogenation of Vinyl Bis(boronates) Ar Alk B(pin) B(pin) B(pin) B(pin) 1:2 Rh : Walphos #1 H 2 O2, NaOH 20 atm H2 , 23 C, 24 hrs, toluene THF, 23 C, 3 hrs 1:2 Rh : Walphos #2 H2 O2 , NaOH 20-30 atm H 2, 23 C, 24 hrs, THF, 23 C, 3 hrs dichloroethane OH Ar OH 60-92% yield 77-93% ee OH 72-89% yield 85-93% ee OH Alk CF3 F3C P 2 Fe PR'2 Walphos #1: R = Ph #2: R = Cy 25 Morgan, J. B.; Morken, J. P. JACS 2004, 126, 15338-15339. Hydrogenation of Vinyl Bis(boronates) Single Pot Diboronation / Hydrogenation / Oxidation of Phenylacetylene Ph 5% (Ph 3P) 2Pt(=) B2pin2 5:7 Rh : Walphos #1 toluene, 100 C, 48 hrs 20 atm H 2 , 23 C, 24 hrs toluene H 2O 2, NaOH OH OH 66% yield 91% ee Single Pot Hydrogenation / Homologation / Oxidation of Vinyl Bis(boronate) Ph B(pin) B(pin) 1:2 Rh : Walphos #1 1.) ClCH2 Li, THF CF3 20 atm H 2 , 23 C, 24 hrs 2.) H 2O 2, NaOH toluene F3C HO OH 76% yield 92% ee P 2 PR'2 Fe 26 Morgan, J. B.; Morken, J. P. JACS 2004, 126, 15338-15339. Walphos #1: R = Ph #2: R = Cy Hydrogenation of Vinyl Bis(boronates) B(pin) B(pin) OH H 2O 2, NaOH Rh / Walphos #1 OH 15 atm H2 , 23 C, 24 hrs, THF, 23 C, 3 hrs toluene entry Ligand : Rh ratio % yield % ee configuration 1 0.8 90 52 R 2 1 83 37 R 3 2 84 93 S CF3 F3C P 2 Fe PR'2 27 Morgan, J. B.; Morken, J. P. JACS 2004, 126, 15338-15339. Walphos #1: R = Ph #2: R = Cy Hydrogenation of Vinyl Boronates NHBn 81% yield >95% ee B(pin) 1 Rh / L* / H2 OH 2 86% yield 95% ee CF3 1: BCl3, then BnN3; 22 C 2: (i) ClCH2Li, THF, -78 C (ii) NaOH, H2O2 Moran, W. J.; Morken, J. P. Org. Lett. 2006, 8, 2413-2415. F 3C P 2 Fe 28 PPh2 Hydrogenation of Vinyl Boronates B(pin) R 5:8 Rh : Walphos 35 atm H 2, -35 C 12 hrs B(pin) R Me >95% conv. R= ee (toluene) ee (DCE) cyclohex 97 95 n-hex 81 84 TBSOCH2CH2 90 85 PivOCH2CH2 90 86 PivOCH2CH2CH2 92 89 tBuO2CCH2CH2 94 59 PhCH2 88 79 >20:1 dr >20:1 dr >20:1 dr >20:1 dr CF3 TBSO TBSO F 3C P 2 Fe Moran, W. J.; Morken, J. P. Org. Lett. 2006, 8, 2413-2415. PPh2 29 Hydrogenation of Vinyl Boronates 5 mol % Rh 8 mol % (R,R)-Walphos 35 atm H2 , -35 C 10 min O O B OMe O TBSO TBSO 84% conv <10% conv 32% conv 70% conv Boronate is activating: sterics alone are not responsible for high reactivity. 30 Moran, W. J.; Morken, J. P. Org. Lett. 2006, 8, 2413-2415. Hydrogenation of Vinyl Boronates 5 mol % Rh 8 mol % (R,R)-Walphos 35 atm H2 , -35 C 10 min O O B OMe O TBSO 84% conv TBSO <10% conv 32% conv 70% conv Reactivity not due solely to the π-acceptor properties of boronate: methyl methacrylate exhibits much less reactivity. Moran, W. J.; Morken, J. P. Org. Lett. 2006, 8, 2413-2415. 31 Hydrogenation of Vinyl Boronates 5 mol % Rh 8 mol % (R,R)-Walphos 35 atm H2 , -35 C 10 min O O B OMe O TBSO 84% conv TBSO <10% conv 32% conv 70% conv Enhanced reactivity not due to inductive donation from boron to carbon: inductively withdrawing phenyl ring provides similar levels of reactivity, but no enantioselectivity. Moran, W. J.; Morken, J. P. Org. Lett. 2006, 8, 2413-2415. 32 (S)-Metolachlor: Dual Magnum MeO MeO O O N CH 2Cl N MeO CH 2Cl MeO O N CH 2Cl O N MeO CH 2Cl O N CH 2Cl • Important grass herbicide used in corn and other crops. • Over 10,000 tons / year produced by Syngenta AG (trademark: Dual Magnum) • Hydrogenation is largest enantioselective catalytic process used in industry; one of fastest homogeneous systems known. Arrayas, R.; Andreo, J.; Carretaro, J. Angew. Chem. Int. Ed. 2006, 45, 7674-7715. Blaser, H.; et al. Top. Catal. 2002, 19, 3-16. 33 Dorta, R.; et al. Chem. Eur. J. 2004, 10, 4546-4555. Syngenta website: www.syngenta.com (S)-Metolachlor: Dual Magnum MeO MeO O N CH 2Cl MeO O N CH 2Cl MeO O N O N CH 2Cl ACTIVE! MeO CH 2Cl N CH 2Cl INACTIVE! Pt / C H 2 SO 4 NH 2 1970: Metolachlor discovered 1978: rac-Metolachlor production started, >10,000 tons/yr produced O + O OMe MeO 1982: Metolachlor stereoisomers synthesized; (S)-isomer found to be active. O NH Cl 5 atm H 2, 50 C MeO CH 2 Cl O N CH 2Cl 34 Blaser, H.; et al. Chimia 1999, 53, 275-280. (S)-Metolachlor: Requirements for Industrially Feasible Process • Enantioselectivity • Catalyst productivity • Catalyst activity • Catalyst stability • Availability and quality of starting material • ee > 80% • S/C > 50,000 • TOF > 10,000 h-1 Spindler, F.; et al. In Catalysis of Organic Reactions; Maltz, R., Jr., Ed. pp153166. 35 (S)-Metolachlor: Enantioselective Synthesis MeO N MeO OMe O O N CH 2 Cl O N CH 2 Cl R 1.) H2 , chiral cat. OMe 2.) TsX product (1) product (2) or or O CH 2 Cl Rh / L* OTs OMe NH + (ClCOCH 2Cl) R = H or COCH2 Cl MeO MeO Only possible approach! N M / L* H2 NH ClCOCH2 Cl product (3) 36 Blaser, H.; et al. Chimia 1999, 53, 275-280. (S)-Metolachlor: Imine Hydrogenation MeO MeO [Ir(cod)Cl]2 / L* TBAI N NH O 25 atm H 2 , 24 hrs PPh 2 PPh2 O PPh2 PPh2 (2R,4R)-bdpp H H Ligand Temp % conv TOFavg ee diop 25 C 95.5 32 h-1 61% (S) bdpp 25 C 10.6 4 h-1 31% (S) -5 C 79 26 h-1 78% (S) (4S,5S)-diop Conclusions from Initial Screening: • Addition of halogen anions increases rate, esp. with both Cl- and I- in sol’n. • Catalyst deactivation major problem: rates dependant on ligand structure, solvent and temperature. Spindler, F.; et al. In Catalysis of Organic Reactions; Maltz, R., Jr., Ed. pp153166. 37 (S)-Metolachlor: Imine Hydrogenation MeO MeO 0.1 mol % Ir / L* TBAI, AcOH N NH 25 atm H 2 , 24 hrs R R’ % Conv TOF ee Ph tBu 6 3 h-1 n/a 4-CF3Ph Cy 80 18 h-1 21% 4-CF2Ph Ph 100 44 h-1 21% Ph 3,5-Xyl 100 (2 hrs!) 396 h-1 79% Conclusions so far: • Only ferrocenyl diphosphine ligands gave medium to good ees and catalyst stability. • Matched chirality necessary. • Aryl groups at two phosphines necessary for good performance. Blaser, H.; et al. J Organomet Chem 2001, 621, 34-38. PR' 2 PR 2 Fe 38 (S)-Metolachlor: Imine Hydrogenation MeO MeO N 0.1 mol % Ir / L* NH 25 atm H 2 , 30 C TBAI AcOH time to 100% conversion initial rate (mmol / min) % ee - - 10 hr 0.3 71.2 150 mg - 12 hr 0.3 71.6 - 2 mL 16 hr 0.1 56.2 150 mg 2 mL 0.5 hr 1.5 78.5 In the presence of AcOH and I-, the rate of reaction is accelerated by a factor of 5, and the time for 100% conversion is twenty times shorter than without additives! P(3,5-xyl)2 Fe PPh2 Blaser, H.; et al. Chimia 1999, 53, 275-280. Blaser, H.; et al. J Organomet Chem 2001, 621, 34-38. 39 Spindler, F.; et al. In Catalysis of Organic Reactions; Maltz, R., Jr., Ed. pp153-166. (S)-Metolachlor: Imine Hydrogenation MeO MeO N 0.001 mol % Ir / L* TBAI, 10% AcOH NH 80 atm H2 R’ Time (h) Conv (%) TOF (h-1) ee (%) 4-n-Pr2N-3,5-Xyl 3.5 100 28,000 83 4-Me2N-3,5-Xyl 1 100 100,000 80 3,5-Xyl 0.6 100 167,000 76 4-(N-Pyr)-3,5-Xyl 3 100 33,000 69 While other ligands have slightly higher ees, Xyliphos’ high activity makes it ideal for industrial use. Blaser, H.; Spindler, F. Chimia 1997, 51, 297-299. Blaser, H.; et al. J. Organomet Chem 2001, 621, 34-38. Fe PR' 2 PPh 2 40 (S)-Metolachlor: Imine Hydrogenation MeO MeO N Ir / Xyliphos TBAI, 10% AcOH NH 80 atm H 2, 50 C Original Requirements: • ee > 80% • S/C > 50,000 • TOF > 10,000 h-1 Final Results: • ee = 79% • S/C > 1,000,000 • TOF > 1,800,000 h-1 P(3,5-MePh)2 Blaser, H.; Spindler, F. Chimia 1997, 51, 297-299. Blaser, H.; et al. J. Organomet Chem 2001, 621, 34-38. Fe PPh2 41 (S)-Metolachlor: Production Scale MeO MeO P(3,5-MePh) 2 N NH 80 atm H2 Fe PPh 2 / Ir AcOH, TBAI extraction, flash distillation, distillation S/C = 2,000,000 50 C, 4 hrs Ir is recycled Blaser, H.; Spindler, F. Chimia 1997, 51, 297-299. Blaser, H.; et al. Chimia 1999, 53, 275-280. 42 Conclusions • Ferrocenes possess unusual properties: – planar chirality – stereoretentive SN1 substitution • Ferrocenyl ligands have been used to hydrogenate a number of uncommon substrates: – – – – N-aryl imines indoles unprotected enamines vinyl boronates 43 Acknowledgements • Clark Landis and Landis Group Members • Practice Talk Attendees: – Brian Hashiguchi – Avery Watkins – Katherine Traynor – Hairong Guan – Ram Neupane • Family • Dow Chemical, for funding 44