슬라이드 1 - Tistory
Download
Report
Transcript 슬라이드 1 - Tistory
Nonlinear & Neural Networks LAB.
CHAPTER 1
INTRODUCTION
NUMBER SYSTEMS AND CONVERSION
1.1
1.2
1.3
1.4
1.5
Digital Systems and Switching Circuits
Number Systems and Conversion
Binary Arithmetic
Representation of Negative Numbers
Binary Codes
Objectives
Topics introduced in this chapter:
• Difference between Analog and Digital System
• Difference between Combinational and Sequential Circuits
• Binary number and digital systems
• Number systems and Conversion
• Add, Subtract, Multiply, Divide Positive Binary Numbers
• 1’s Complement, 2’s Complement for Negative binary number
• BCD code, 6-3-1-1 code, excess-3 code
Nonlinear & Neural Networks LAB.
1.1 Digital Systems and Switching Circuits
• Digital systems: computation, data processing, control,
communication, measurement
- Reliable, Integration
• Analog – Continuous
- Natural Phenomena
(Pressure, Temperature, Speed…)
- Difficulty in realizing, processing using electronics
• Digital – Discrete
- Binary Digit Signal Processing as Bit unit
- Easy in realizing, processing using electronics
- High performance due to Integrated Circuit Technology
Nonlinear & Neural Networks LAB.
Binary Digit?
• Binary:- Two values(0, 1)
- Each digit is called as a “bit”
Good things in Binary Number
- Number representation with only two values (0,1)
- Can be implemented with simple electronics devices
(ex: Voltage High(1), Low(0)
Switch On (1) Off(0)…)
Nonlinear & Neural Networks LAB.
Switching Circuit
• Combinational Circuit :
outputs depend on only present inputs, not on past inputs
• Sequential Circuit:
- outputs depend on both present inputs and past inputs
- have “memory” function
Nonlinear & Neural Networks LAB.
1.2 Number Systems and Conversion
Decimal:
953.7810 9 102 5 101 3100 7 101 8 102
Binary:
1011.112 1 23 0 2 2 1 21 1 20 1 2 1 1 2 2
8 0 2 1
1 1
3
11 11.7510
2 4
4
N (a4 a3a2 a1a0 .a1a2 a3 ) R
Radix(Base):
a4 R 4 a3 R 3 a2 R 2 a1 R1 a0 R 0
a1 R 1 a2 R 2 a3 R 3
Example:
147.38 1 82 4 81 7 80 3 81 64 32 7
3
8
103.37510
Hexa-Decimal:
A2F16 10162 2 161 15160 2560 32 15 260710
Nonlinear & Neural Networks LAB.
1.2 Number Systems and Conversion
Conversion of Decimal to Base-R
N (anan1 a2a1a0 ) R an Rn an1Rn1 a2 R2 a1R1 a0
N
an R n 1 an 1 R n 2 a2 R1 a1 Q1 , remainder a0
R
Q1
an R n 2 an 1 R n 3 a3 R1 a2 Q2 , remainder a1
R
Q2
an R n 3 an 1 R n 4 a3 Q3 , remainder a2
R
Nonlinear & Neural Networks LAB.
1.2 Number Systems and Conversion
Example: Decimal to Binary Conversion
2
53
2
26
rem. = 1 = a0
2
13
rem. = 0 = a1
2
6
rem. = 1 = a2
2
3
rem. = 0 = a3
2
1
rem. = 1 = a4
0
rem. = 1 = a5
5310 1101012
Nonlinear & Neural Networks LAB.
1.2 Number Systems and Conversion
Conversion of a decimal fraction to Base-R
F (.a1a2a3 am ) R a1R1 a2 R2 a3 R3 am Rm
FR a1 a2 R1 a3 R2 am Rm1 a1 F1
F1R a2 a3 R1 am Rm2 a2 F2
F2 R a3 am Rm3 a3 F3
Example:
F .625
2
1.250
(a1 1)
F1 .250
F2 .500
2
0.500
( a 2 0)
2
1.000
(a3 1)
.62510 .1012
Nonlinear & Neural Networks LAB.
1.2 Number Systems and Conversion
Example: Convert 0.7 to binary
.7
2
(1).4
2
(0).8
2
(1).6
2
(1).2
2
(0).4
2
Process starts repeating here because .4 was previously
obtained
(0).8
0.710 0.1 011001100110 2
Nonlinear & Neural Networks LAB.
1.2 Number Systems and Conversion
Example: Convert 231.3 to base-7
231 .34 2 16 3 4 1
7
45
7
6
rem.3
0
rem.6
.75
7
(5).25
3
45.7510
4
45.7510 63.5151 7
7
(1).75
7
(5).25
7
(1).75
1001101.0101112 0100
1101
0101
1100
4D.5C16
4
D
5
C
Nonlinear & Neural Networks LAB.
1.2 Number Systems and Conversion
Conversion of Binary to Octal, Hexa-decimal
(101011010111 )2
=(
)8, octal
(10111011)2
=(
)8, octal
(1010111100100101)2
=(
(1101101000)2
=(
)16, Hexadecimal
)16, Hexadecimal
Nonlinear & Neural Networks LAB.
1.3 Binary Arithmetic
Addition
000
0 1 1
1 0 1
1 1 0
Example:
and carry 1 to the next column
1111
carries
1310 1101
1110 1011
11000 2410
Nonlinear & Neural Networks LAB.
1.3 Binary Arithmetic
Subtraction
00 0
0 1 1
1 0 1
1 1 0
and borrow 1 from the next column
Example:
1
11101
10011
1010
(indicates
a borrow
From the
3rd column)
1111
10000
11
1101
borrows
111
111001
1011
101110
borrows
Nonlinear & Neural Networks LAB.
1.3 Binary Arithmetic
Subtraction Example with Decimal
column 2
205
18
187
205 18 [2 102 0 101 5 100 ]
[
column 1
1101 8 100 ]
note borrow from column 1
[2 102 (0 1) 101 (10 5) 100 ]
[
1101
8 100 ]
note borrow from column 2
[(2 1) 102 (10 0 1) 101 15100 ]
[
[1102
1) 101 8 100 ]
8 101
7 100 ] 187
Nonlinear & Neural Networks LAB.
1.3 Binary Arithmetic
Multiplication
Multiply: 13 x11(10)
00 0
0 1 0
1 0 0
1 1 1
1101
1011
1101
1101
0000
1101
10001111 14310
1111
1011
1111
multiplicand
multiplier
first partial product
second partial product
0000
(01111) sum of first two partial products
third partial product
1111
(1001011
) sum after adding third partial product
fourth partial product
1111
11000011 final product (sum after adding fourth partial prodoct)
Nonlinear & Neural Networks LAB.
1.3 Binary Arithmetic
Division
1101
1011 10010001
1011
1110
1011
1101
1011
The quotient is 1101 with a remainder
of 10.
10
Nonlinear & Neural Networks LAB.
1.4 Representation of Negative Numbers
bn – 1
b1
b0
b1
b0
Magnitude
MSB
(a) Unsigned number
bn – 1 bn – 2
Magnitude
Sign
0 denotes +
MSB
1 denotes
–
(b) Signed number
Nonlinear & Neural Networks LAB.
1.4 Representation of Negative Numbers
2’s complement representation for Negative Numbers
N * 2n N
Negative integers
+N
+0
+1
+2
+3
+4
+5
+6
+7
Positive
integers
(all systems)
0000
0001
0010
0100
0101
0110
0111
-N
Sign and
magnitude
2’s complement
N*
1’s complement
N
-0
-1
-2
-3
-4
-5
-6
-7
-8
1000
1001
1010
1011
1100
1101
1110
1111
-
1111
1110
1101
1100
1011
1010
1001
1000
1111
1110
1101
1100
1011
1010
1001
1000
-
Nonlinear & Neural Networks LAB.
1.4 Representation of Negative Numbers
1’s complement representation for Negative Numbers
N (2 n 1) N
Example:
2n 1 111111
N 010101
N 101010
N* 2n N (2n 1 N ) 1 N 1
== 2’s complement: 1’s complement + ‘1’
N 2n N * and N (2n 1) N
2n 2n1 2n1
Nonlinear & Neural Networks LAB.
1.4 Representation of Negative Number
Addition of 2’s complement Numbers
Case 1
Case 2
Case 3
3
4
7
0011
0100
0111
5
0101
6
0110
1011
5
6
Case 4
5
6
0101
1010
1111
(correct answer)
wrong answer because of overflow (+11 requires
5 bits including sign)
(correct answer)
1011
0110
(1)0001
correct answer when the carry from the sign bit
is ignored (this is not an overflow)
Nonlinear & Neural Networks LAB.
1.4 Representation of Negative Numbers
Addition of 2’s complement Numbers
Case 5
3
4
7
1101
1100
(1)1001
Case 6
5
6
correct answer when the last carry is ignored
(this is not an overflow)
1011
1010
(1)0101
wrong answer because of overflow
(-11 requires 5 bits including sign)
Nonlinear & Neural Networks LAB.
1.4 Representation of Negative Numbers
Addition of 1’s complement Numbers
Case 3
Case 4
5
6
1
5
6
Case 5
5
6
0101
1001
1110
(correct answer)
1010
0110
(1) 0000
1 (end-around carry)
0001 (correct answer, no overflow)
1100
1011
(1) 0111
1 (end-around carry)
1000 (correct answer, no overflow)
Nonlinear & Neural Networks LAB.
1.4 Representation of Negative Numbers
Addition of 1’s complement Numbers
Case 6
1010
5
6
1001
(1) 0011
1 (end-around carry)
0100 (wrong answer because of overflow)
Case 4 : A B (where B A)
A B (2n 1 A) B 2n ( B A) 1
Case 5 :
A B ( A B 2n1 )
A B (2n 1 A) (2n 1 B) 2n [2n 1 ( A B)] 1
Nonlinear & Neural Networks LAB.
1.4 Representation of Negative Numbers
Addition of 1’s complement Numbers
11110100
11101011
(1) 11011111
1
11100000 30
(11)
(20)
(end-around carry)
Addition of 2’s complement Numbers
(8)
19
(1)00001011 11
11111000
00010011
(end-around carry)
Nonlinear & Neural Networks LAB.
1.5 Binary Codes
9 3 7.2 5
1001 0011 0111 . 0010 0101
Decimal
Digit
0
1
2
3
4
5
6
7
8
9
8-4-2-1
Code
(BCD)
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
6-3-1-1
Code
0000
0001
0011
0100
0101
0111
1000
1001
1011
1100
Excees-3
Code
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
2-out-of-5
Code
00011
00101
00110
01001
01010
01100
10001
10010
10100
11000
Gray
Code
0000
0001
0011
0010
0110
1110
1010
1011
1001
1000
Nonlinear & Neural Networks LAB.
1.5 Binary Codes
6-3-1-1 Code:
N w3a3 w2a2 w1a1 w0a0
N 6 1 3 0 1 1 1 1 8
ASCII Code
1010011 1110100 1100001 1110010 1110100
S
t
a
r
t
Nonlinear & Neural Networks LAB.