DNA Based Biosensors

Download Report

Transcript DNA Based Biosensors

Biosensors
Christopher Byrd
ENPM808B
University of Maryland, College Park
December 4, 2007
Outline

Introduction

4 Specific Types of Biosensors

Electrochemical (DNA)

Carbon nanotube

BioFET

Whole Cell

Basic functionality

Benefits/Challenges

Summary

References
Introduction

Biosensor:
Incorporation of a biomolecule in order to
detect something
Species to be detected
Filter
Recognition
(analyte)
Layer
Introduction
E-DNA
Transducer
Carbon N-T
Electronics
BioFET
Whole Cell
Signal
Summary
Introduction



Biosensors ~ $3B
90% → Glucose testing
8% - 10% increase in industry per year
Introduction
E-DNA
Carbon N-T
BioFET
Whole Cell
Summary
Electrochemical DNA Sensors




Introduction
Harnesses specificity of DNA
Simple assembly
Customizable
Vast uses for small cost
E-DNA
Carbon N-T
BioFET
Whole Cell
Summary
DNA Structure


DNA structures---double
helix
4 complementary
bases:
Adenine (A), Guanine (G),
Thymine (T), and Cytosine (C)
Introduction
E-DNA
Carbon N-T
BioFET
Whole Cell
Summary
DNA Specificity

Hydrogen bonding between base pairs

Stacking interaction between bases along axis
of double-helix

Animation
Introduction
E-DNA
Carbon N-T
BioFET
Whole Cell
Summary
Principles of DNA biosensors

Nucleic acid hybridization
(Target Sequence)
(Hybridization)
(Stable dsDNA)
ssDNA (Probe)
Source: http://cswww.essex.ac.uk
Introduction
E-DNA
Carbon N-T
BioFET
Whole Cell
Summary
E-DNA Sensor Structure
“Stem-loop”
s
Gold electrode
Introduction
E-DNA
Carbon N-T
BioFET
Whole Cell
Summary
E-DNA Sensor Structure
Target
“Stem-loop”
s
Gold electrode
Introduction
E-DNA
Carbon N-T
BioFET
Whole Cell
Summary
E-DNA Sensor Structure
(Open, extended)
(Stem-loop)
Source: Ricci et al., Langmuir, 2007, 23, 6827-6834
Introduction
E-DNA
Carbon N-T
BioFET
Whole Cell
Summary
Carbon Nanotube Biosensor
Image: www.cnano-rhone-alpes.org
Introduction
E-DNA
Carbon N-T
BioFET
Whole Cell
Summary
Carbon Nanotube Biosensor




One atom thick
One nanometer diameter
Ability to be functionalized
Electrical conductivity as high
as copper, thermal
conductivity as high as
diamond
Introduction
E-DNA
Carbon N-T
BioFET
Whole Cell
Summary
CNT Biosensor Structure
Succinimidyl ester
Source: Chen et al., 2001
Introduction
E-DNA
Carbon N-T
BioFET
Whole Cell
Summary
CNT Uncoated vs. Coated
Source: Chen et al., 2001
Introduction
E-DNA
Carbon N-T
BioFET
Whole Cell
Summary
CNT Biosensor Signal Detection
Glucose
O2
Gluconic Acid
H2O2
e-
Source: Besteman et al., 2003
Introduction
E-DNA
Carbon N-T
BioFET
Whole Cell
Summary
CNT Biosensor Signal Detection
e-
e-
e-
e-
Effectively increases electrical current
Source: Besteman et al., 2003
Introduction
E-DNA
Carbon N-T
BioFET
Whole Cell
Summary
CNT Biosensor Results
160 mM
60 mM
20 mM
0 mM
Source: Besteman et al., 2003
Introduction
E-DNA
Carbon N-T
BioFET
Whole Cell
Summary
BioFET


Draws upon versatility of common electronic
component (Field-Effect Transistor)
Well understood expectations/results
Introduction
E-DNA
Carbon N-T
BioFET
Whole Cell
Summary
FET
+
Drain
Gate
Insulator
+ +
Source
+ +
(Not conductive enough)
(Electron Channel)
-
-
Introduction
E-DNA
Carbon N-T
-
BioFET
Whole Cell
Summary
FET
+
Threshold Voltage
Drain
Gate
Insulator
+ +
Introduction
E-DNA
Carbon N-T
Source
+ +
BioFET
Whole Cell
Summary
FET
+
Drain
Gate
Insulator
++ +++ + ++
- - - - -
-
-
-
Introduction
E-DNA
Source
Carbon N-T
-
BioFET
Whole Cell
Summary
BioFET
Source: Im et al., 2007
Introduction
E-DNA
Carbon N-T
BioFET
Whole Cell
Summary
BioFET
Source: Im et al., 2007
Introduction
E-DNA
Carbon N-T
BioFET
Whole Cell
Summary
BioFET Results
Gate (before)
Source: Im et al., 2007
Introduction
E-DNA
Carbon N-T
BioFET
Whole Cell
Summary
BioFET Results
Gate
(w/Gate
complete
(afterBiomolecule)
etch, w/biotin)
d
Source: Im et al., 2007
Introduction
E-DNA
Carbon N-T
BioFET
Whole Cell
Summary
Whole Cell Sensors
Source: http://www.whatsnextnetwork.com/technology/media/cell_adhesion.jpg
Introduction
E-DNA
Carbon N-T
BioFET
Whole Cell
Summary
Whole Cell Sensors






Harness normal genetic processes
May detect dozens of pathogens
Modifiable/customizable
Reports bioavailability
Temperature/pH sensitive
Short shelf-life
Introduction
E-DNA
Carbon N-T
BioFET
Whole Cell
Summary
Whole Cell Sensors
Source: Daunert et al., 2000
Introduction
E-DNA
Carbon N-T
BioFET
Whole Cell
Summary
Action-Potential Biosensor
Source: Tonomura et al., 2006
Introduction
E-DNA
Carbon N-T
BioFET
Whole Cell
Summary
Action-Potential Biosensor
(Side view)
Source: Tonomura et al., 2006
Introduction
E-DNA
Carbon N-T
BioFET
Whole Cell
Summary
Action-Potential Biosensor
Suction
Source: Tonomura et al., 2006
Introduction
E-DNA
Carbon N-T
BioFET
Whole Cell
Summary
Action-Potential Biosensor
Suction
Source: Tonomura et al., 2006
Introduction
E-DNA
Carbon N-T
BioFET
Whole Cell
Summary
Action-Potential Biosensor
Source: Tonomura et al., 2006
Introduction
E-DNA
Carbon N-T
BioFET
Whole Cell
Summary
Summary

Use of biomolecules in sensors offers:




Introduction
Extreme sensitivity
Flexibility of use
Wide array of detection
Universal application
E-DNA
Carbon N-T
BioFET
Whole Cell
Summary
Summary

But still maintains challenges of:




pH/Temperature sensitivity
Degradation
Repeatable use
Regardless of challenges:

Introduction
Biosensors will permeate future society
E-DNA
Carbon N-T
BioFET
Whole Cell
Summary
References





















K McKimmie. “What’s a Biosensor, Anyway?”, Indiana Business Magazine, 2005, 49, 1:18-23.
N Zimmerman. “Chemical Sensors Market Still Dominating Sensors”, Materials Management in Health Care, 2006, 2, 54.
K Odenthal, J Gooding. “An introduction to electrochemical DNA biosensors”, Analyst, 2007, 132, 603–610.
S V Lemeshko, T Powdrill, Y Belosludtsev, M Hogan, “Oligonucleotides form a duplex with non-helical properties on a positively
charged surface”, Nucleic Acids Res., 2001, 29, 3051–3058.
F Ricci, R Lai, A Heeger, K Plaxco, J Sumner. “Effect of Molecular Crowding on the Response of an Electrochemical DNA
Sensor”, Langmuir, 2007, 23, 6827-6834.
M Heller. “DNA Microarray Technology”, Annual Review of Biomedical Engineering, 2002, 4, 129-153.
E Boon, D Ceres, T Drummond, M Hill, J Barton, “Mutation Detection by DNA electrocatalysis at DNA-modified electrodes”, Nat.
Biotechnol. 2000, 18, 1096-1100.
S Timur, U Anik, D Odaci, L Gorton, “Development of a microbial biosensor based on carbon nanotube (CNT) modified
electrodes”, Electrochemistry Communications, 2007, 9, 1810-1815.
K Besteman, J Lee, F Wiertz, H Heering, C Dekker. “Enzyme-Coated Carbon Nanotubes as
Single-Molecule Biosensors”, Nano Letters, 2003, 3, 6: 727-730.
R Chen, Y Zhang, D Wang, H Dai. “Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein
Immobilization”, J. Am. Chem. Soc., 2001, 123, 16: 3838 -3839.
K Balasubramanian, M Burghard. “Biosensors based on carbon nanotubes”, Anal. Bioanal. Chem., 2005, 385, 452-468.
Hayes & Horowitz, Student Manual for the Art of Electronics, Cambridge Univ. Press, 1989.
I Hyungsoon, H Xing-Jiu, G Bonsang, C Yang-Kyu. “A dielectric-modulated field-effect transistor for biosensing”, Nature
Nanotechnology, 2007, 2, 430 – 434.
D Therriault. “Filling the Gap”, Nature Nanotechnology, 2007, 2, 393 - 394.
S Daunert, GBarrett, J Feliciano, R Shetty, S Shrestha, W Smith-Spencer. “Genetically Engineered Whole-Cell Sensing Systems:
Coupling Biological Recognition with Reporter Genes”, Chem. Rev. 2000, 100, 2705-2738.
T Petänen, M Romantschuk. “Measurement of bioavailability of mercury and arsenite using bacterial biosensors”, Chemosphere,
2003, 50, 409-413.
F Roberto, J Barnes, D Bruhn. “Evaluation of a GFP Reporter Gene Construct for Environmental Arsenic Detection.”, Talanta.
2002, 58, 1:181-188.
W Tonomura, R Kitazawa, T Ueyama, H Okamura, S Konishi. “Electrophysiological biosensor with Micro Channel Array for
Sensing Signals from Single Cells”, IEEE Sensors, 2006, 140-143.
R Leois, J Rae. “Low-noise patch-clamp techniques”, Meth. Enzym. 1998, 293: 218-266.
[1] A Vikas, C S Pundir. “Biosensors: Future Analytical Tools”, Sensors and Transducers, 2007, 2, 935-944.
Questions?
Introduction
E-DNA
Carbon N-T
BioFET
Whole Cell
Summary