Diagrammatic Monte Carlo simulation of the Fermi

Download Report

Transcript Diagrammatic Monte Carlo simulation of the Fermi

Diagrammatic Monte Carlo Method for
the Fermi Hubbard Model
Youjin Deng
Univ. of Sci. & Tech. of China (USTC)
Adjunct: Umass, Amherst
Nikolay Prokof’ev
UMass
Boris Svistunov
UMass
ANZMAP 2012, Lorne
Outline
•
•
•
•
Fermi-Hubbard Model
Diagrammatic Monte Carlo sampling
Preliminary results
Discussion
Fermi-Hubbard model
Hamiltonian
H  t

ij ,
ai a†j  U  ni ni    ni
i ,
i
momentum representation:
H   ( k   )ak† ak 
k ,
Rich Physics:
 U a
q
kpq ,
†
k q
a†p q 'a p 'ak
'
Ferromagnetism
Anti-ferromagnetism
Metal-insulator transition
Superconductivity
? Many important questions still remain open.
t
U
Feynman’s diagrammatic expansion
Quantity to be calculated:
The full Green’s function:
G, ( p,  2   1 )  Tr a, p ( 2 ) a, p ( 1 ) e  H / T 


Feynman diagrammatic expansion:
The bare Green’s function :
G( 0,) (k ,  2   1 )  Tr a,k ( 2 ) a,k ( 1 ) e  H 0 / T 


1
k
2
k
The bare interaction vertex :
1
k q
q
Uq  (1  2 )
p
2
pq
Uq
A fifth order example:
G(0) (k, 2  3 )
G(0) ( p, 4  5 )
Full Green’s function is expanded as :
G0 ( p, ) =
+
G0 ( p, )
+
+
+
+
+
+
+…
Boldification:
Calculate irreducible diagrams for
G( p, )

Dyson Equation
G0 ( p, )
 to get G
( p,1   2 )
+

G  G0  G0 G :
Calculate irreducible diagrams for
The bare Ladder
The bold Ladder
+
+ ...

+
 to get 
0  U  U 00 :
  0  0
0

+
U

:

0
+
0
0


Two-line irreducible Diagrams:
Self-consistent iteration
G, 
Diagrammatic
expansion
Dyson’s
equation
, 
Monte Carlo sampling
Diagrammatic
expansion
Why not sample the
diagrams by Monte Carlo?
Configuration space = (diagram order, topology and types of lines, internal variables)
Standard Monte Carlo setup:
- configuration space
- each cnf. has a weight factor
Wcnf
A W

W
cnf
- quantity of interest
A
cnf
cnf
cnf
cnf
Monte Carlo
MC
 Acnf 
cnf
configurations generated
from the prob. distribution
Wcnf
Diagram order
{qi , i , pi }
Diagram topology
This is NOT: write diagram after diagram, compute its value, sum
Preliminary results
U /t  4
2D Fermi-Hubbard model in the Fermi-liquid regime
 / t  1.5  n  0.6
T / t  0.025 EF /100
N: cutoff for diagram order
Series converge fast
Fermi –liquid regime was reached
E (T )  E (0)  (  F   F' EF )
n(T )  n(0)  
'
F
 2T 2
6
 2T 2
6
U /t  4
 / t  3.1  n  1.2
T / t  0.4 EF /10
Comparing DiagMC with cluster DMFT
(DCA implementation)
!
2D Fermi-Hubbard model in the Fermi-liquid regime
U /t  4
 / t  3.1  n  1.2
T / t  0.4 EF /10
Momentum dependence of
self-energy
 0  T , p  along
px  py
Discussion
• Absence of large parameter

The ladder interaction:
+
U (t )  (t )
Trick to suppress statistical fluctuation
0
 
1
+

Define a “fake” function:
 
+

• Does the general idea work?
Skeleton diagrams up to high-order: do they make sense for g  1 ?
NO
Diverge for large g even if
are convergent for small g.
Dyson: Expansion in
powers of g is asymptotic
if for some (e.g. complex) g one
finds pathological behavior.
Electron gas:
Bosons:
Math. Statement:
# of skeleton graphs
 2n n3/2 n !
asymptotic series with
zero conv. radius
(n! beats any power)
e  ie
U  U
[collapse to infinite density]
AN
g 1
Asymptotic series for
with zero convergence radius
1/ N
Skeleton diagrams up to high-order: do they make sense for g  1 ?
YES
Divergent series outside
of finite convergence radius
can be re-summed.
Dyson:
- Does not apply to the resonant Fermi
gas and the Fermi-Hubbard model at
finite T.
- not known if it applies to skeleton
graphs which are NOT series in bare
coupling g: recall the BCS answer
(one lowest-order diagram)
# of graphs is  2n n3/2 n !
but due to sign-blessing
they may compensate each
other to accuracy better then
1 / n ! leading to finite conv.
radius
  e1/ g
- Regularization techniques
From strong coupling
theories based on one
lowest-order diagram
To accurate unbiased theories
based on millions of diagrams and
limit N  
• Proven examples
Resonant Fermi gas:
Nature Phys. 8, 366 (2012)
Universal results in the zero-range,
kF r0  0,
and thermodynamic limit
Square and Triangular lattice spin-1/2 Heisenberg model test:
arXiv:1211.3631
Square lattice (“exact”=lattice PIMC)
T  J  TMF
Triangular lattice (ED=exact diagonalization)
T  1.25 J
• Computational complexity
Sign-problem
Variational methods
Determinant MC
+ “solves” ni  ni   1 case
+ universal
- often reliable only at T=0
- systematic errors
- finite-size extrapolation
- CPU expensive
- not universal
- finite-size extrapolation
Cluster
DMFT /MC
DCA methods
Diagrammatic
+ universal
- diagram-order
cluster size extrapolation
extrapolation
Computational complexity
Is exponential : exp{#  }
Cluster DMFT
 F
T
 
 D
L

linear size
Diagrammatic MC
N
diagram order
for irreducible
diagrams
Thank You!
Key elements of DiagMC
resummation technique

Example:
A   cn  3  9 / 2  9  81/ 4  ...  ?
n 0
Define a function
such that:
f n, N
f n, N
Nb
 1 for n  N 1
f n, N  e
f n , N  e  n ln( n )
fn, N  0 for n  N
Na
n

Construct sums
 n2 / N
AN
AN   cn f n , N and extrapolate Nlim

to get
A
n 0
AN
ln 4
1/ N
(Gauss)
(Lindeloef)
Key elements of DiagMC
self-consistent formulation
 , , … to getG , U , …. from Dyson equations
Calculate irreducible diagrams for
G( p, )

Dyson Equation:
+
G0 ( p, )
(
p,1   2 ) +

Screening:
+
+ ...

+
U
U
G
Irreducible 3-point vertex:
3 
 1 
3
More tools: (naturally incorporating Dynamic mean-field theory solutions)

Ladders:
(contact potential)
 (0)
+
U

U
What is DiagMC
=
+
+
+
+
+
+
MC sampling Feyman Diagrammatic series:
• Use MC to do integration
• Use MC to sample diagrams of different order and/or
different topology
What is the purpose?
• Solve strongly correlated quantum system(Fermion,
spin and Boson, Popov-Fedotov trick)
+…