Transcript Document

High Temperature Superconductivity:
Outline:
S. Kivelson
V. Emery
E. Carlson
M. Granath
V. Oganesyan
X-J. Zhou
Z-X. Shen
Basic facts concerning the cuprates
Stripes: What are they and why do they occur
Experimental signatures of stripes
Are stripes good or bad for superconductivity ?
Consequences of stripe formation:
• Fractionalization
• Confinement
D. Orgad
Racah Institute, Hebrew University, Jerusalem
The Cuprates: Basic Structure
La(2 - x)SrxCuO4
• Universal element – CuO planes
• Parent (undoped) compounds – Heisenberg antiferromagnets
• Hole doping by chemical substitution / Oxygen doping
The Cuprates: Typical Phase Diagram
Renner et al.
Harris et al.
Warren et al.
Takagi et al.
ARPES
NMR
DC resistivity
UD Bi2212
T
tunneling
Puchkov et al.
AF
Pseudogap
SC
under
optimal
doping
over
x
Optical conductivity
Neutron scattering, Specific heat …
The Central Question: What happens to an AF upon doping with holes?
Holes in an AF : Why Do Stripes Occur?
t  J  x t
Coulomb Interactions
PHASE SEPARATION
Kinetic Energy
H  t
Frustration

 ( cis c js
 ij  s
STRIPES
  ni n j
 h.c.)  J  ( Si  S j 
)
4
 ij 
Stripes in Other Systems:
Competing Interactions
Ferrofluid between glass plates
Ferromagnetic garnet film
l~1cm
l~10mm
l~10mm
l~400A
Ferromagnetic garnet film
Block copolymers film
Stripe Signatures in S(k,w)
Real Space
Momentum Space
ky
kx

lss
l
ls

l
lccc

2
ls
Experimental Evidence for Stripes:
Neutron Scattering
k
y
Static stripe
order (LNSCO)
kx
0.25
E=24.5meV
Dynamic stripes
(YBCO)
Mook et al.
Tranquada et al.
0.12
Experimental Evidence for Stripes:
ARPES
Angle Resolved PhotoEmission Spectroscopy measures
the single hole spectral function A (k ,w )   dx dt ei ( kxw t )    ( x, t )(0,0)




n(k )   dw A (k ,w )
LNSCO
Experimental Evidence for Stripes:
Tunneling Microscopy
B=5T
B=0
Howald et al.
Hoffman et al.
Consequences of Stripe Formation:
Spin-gap and Enhanced SC Correlations
Doped Spin Ladders: known to be spin-gapped
 s  Je  w

 
L R
 RL
T
 cos( 2 s )e
i 2c
s e
i 2  c
AF
Stripes
PG
SC
x
• The spin-gap creates an amplitude of the SC order parameter
• Provides high pairing scale (avoid Coulomb repulsion)
A Problem …
Good News:
In 1D a spin-gap enhances pairing:
divergent for Kc>1/2
(Kc<1 for repulsive interactions)
1 /( 2  K C 1 )
T c ~ E F ( g SC / E F )
Bad News:
It also enhances CDW correlations:
more divergent !
 sc   sT
( 2 Kc1 )

CDW
  sT
( 2  K c )
1 /( 2  K C )
T c ~ E F ( g CDW / E F )
Old problem from search for organic superconductors
… And Its Resolution
T
Stripe fluctuations
(quantum, thermal or quenched)
are necessary for high Tc!
y2
y1
Nematic?
L
L2
1
Phase
Phase
Stiffness
PG
Stiffness
AF
x
SC
y
static
fluctuating
x
dissolved
Stripe fluctuations dephase CDW coupling:  e
Yamada et al.
2ik F ( L1  L2 )
Stripe fluctuations enhance phase coupling:  e
 | y1  y2 |
e
2 k F  L2 
 2  y 2 
e2
Consequences of Stripe Formation:
Electron Fractionalization Above Tc
In a Fermi liquid the elementary
w excitations have the quantum numbers
of an electron
Mo surface
k
w  v F k
state
multi-qp
background
Valla et al.
qp peak
In a Luttinger liquid the excitations come in
4 flavors  RL    cs 
w
EDC
k
MDC
MDC (w  0) EDC ( k  0)
w  vc | k |
c  0
 c  0.3
w
w  vs | k |
 c  0.5
( L, c )
w  v sk
w  v ck
( L, s )
| w | v c k
| w | v s k
k
Evidence for Fractionalization
ARPES in La1.25Nd0.6Sr0.15CuO4
Breakdown of W-F Law
  2  kB 
    L0
T 3  e 
2
1DEG
 s  0 ,  c  0.5

v s  0.7 eV  A
in Pr1.85Ce0.15CuO4

v c  3.5 eV  A
Orgad et al.
Sharp in Momentum Broad in Energy
Hill et al.
Below Tc: A Coherent Peak
Optimally Doped BSCCO (Tc=91K)
Not a Conventional QP
• Not present above Tc
• Intensity grows below Tc
• Energy and lifetime not
temperature dependent
Fedorov et al.
Josephson Coupling Confines 1D Solitons
The electronic operator L  e
 s and  c
i

2
 c c  s s )
 s , c
creates kinks in

2
x
Charge and spin solitons create  phase shift in pair field
  cos( 2 s )e
i 2  c




s



c


Frustrated Josephson Coupling H ijJosephson   J SC [ i  j  h.c.]
between solitons
Bound spin-charge soliton pair
<
A (k,w) in the Superconducting Phase

A (k ,w )  Z  (w  E )  incoherent

• Quasiparticle weight depends on superfluid density:
Z (T , x )   (T , x )
( 2 c  1 / 2 )
Feng et al.
Conclusions
• Stripes are ubiquitous in the cuprate high temperature
superconductors
• They are important for high temperature
superconductivity
• There is evidence that the normal state of the cuprates
is fractionalized
• In a quasi-one-dimensional superconductor Tc also
marks a confinement transition
Landau Theory of Stripe Phases

Coupled charge (CDW) order  k and spin (SDW) order SQ  q
 , 


a a



* 2
1
2
4 1
2
4





F  r |  k | U  |  k |  rS | SQ  q | U S | SQ  q | U x | SQ  q  SQ  q |
2
2



 l1[( SQ  q  SQ  q )  k  h.c.]  l2 | SQ  q |2 | k |2
 
k  2q
Stripes are “charge
 driven” :
 0
S 0
Spin order is secondary and may be absent
Zachar et al.
Spin-gap Proximity Effect
~
kF  kF
Single particle tunneling irrelevant “system” “environment”
Pair tunneling K   K
F
When  pair
F

 K~   K~
F

1  ~

~
 ~ 
 Ks  Ks   1
4  Kc Kc

F

possible
tunneling
kF
~
kF
~
~
H pair  t cos( 2  s ) cos( 2  s ) cos[ 2 ( c   c )] is relevant.
The spin modes and the relative charge phase mode are gapped.
The only gapless mode involves the total SC phase c  ~c
• Kinetic energy driven pairing
• Repulsive interactions within system and environment increase 
• Repulsive interactions between system and environment decrease 
• Pre-existing spin-gap in environment decreases 
ARPES and Stripes
Angle Resolved PhotoEmission Spectroscopy measures

the single hole spectral function A (k ,w )   dx dt ei ( kxw t )    ( x, t )(0,0)

n(k ) 

 dw A ( k , w )
LNSCO
LNSCO
LSCO
m

 dw A ( k , w )
m 30 meV
Zhou et al.
Disordered Stripe Array: Spectral Weight
Low Energy Spectral Weight
(    )
m
  
1


  dw  eik ( r  r ')  n ( r )n ( r ' ) (w  En )
S r ,r '
n
m 0.2
( )

Granath et al.

(  )
Disordered Stripe Array:
Interacting Spectral Function
Granath et al.
A Model:
Quasi-one-dimensional Superconductor
Charge: Gapless
Spin: Gapped
Weak Pair Tunneling
(Couples charge and spin)
Prediction: New Magnetic Resonance
Neutron scattering measures the spin-spin correlation function:

 dx dt e
i ( k x w t )


S2 k

F

( x, t )  S2k (0,0)
F

1

S2k   R   ' L ' creates 2 spin solitons and 2 charge solitons
F
2  , '
Treat more massive spin solitons as static and solve for the charges:
s
s
2
 c (x )
Hc 
vc
[K c ( x c )2  ( xc )
2
Kc
]   c ( x) cos(
2  c )
Get effective Schrodinger equation for spins:
H
eff
vs2 2  2
 2 s 
 V ( x1  x2 )

2
2 s j 1 x j
•Spin 1 mode that exists below 0.4 Tc
  ,0 
•2kF mode: should appear around  
2 
•Threshold at 2s