Transcript Document
TRC May 2008 Upgrade XLTRC2 Computational Model for Hydrodynamic Journal Bearings – Thermal Effects Thermohydrodynamic Analysis of Hydrodynamic Fluid Film Bearings Luis San Andres Mast-Childs Professor 1 TRC Project 32513/1519 T4 XLPresDm® - FEPressDamJB Equation for flow in film lands Flow conditions Bearing Types Reynolds Equation. Finite Element solution Laminar flow, isoviscous & isothermal Multiple lobe with preload (elliptical, lemon type, offset pads, etc); pressure dam bearing XLPresDm® 2 CODE & GUI proposed additions & enhancements 1. NO thermal effects (mechanical energy dissipation and transport by lubricant) 2. NO changes in clearance due to thermal and mechanical deformation effects. 3. Outdated I/O operations with Fortran code NOT efficient. 4. No informed “guess” for starting calculations. Known Issues with XLPresDm® 3 Geometry for bearing pad with preload Nomenclature c: pad clearance cm: assembled clearance e : journal eccentricity Pad center rp=c-cm : preload, Bearing center rp =0, cylindrical pad rp =c, journal and pad contact rp l e Pad with preload Film thickness: Y journal p h c eX cos eY sin rp cos( p ) t X 4 Thin Film Lubrication: Reynolds Equation Nomenclature P : film pressure h : film thickness : viscosity, fn (T) : journal speed h3 P h h P 12 (T ) 2 t Film thickness: c : pad clearance rp : pad preload eX, eY: journal eccentricity viscosity: h c eX cos eY sin rp cos( p ) S e V T TS Boundary conditions: Pad leading edge, =l. trailing edge, t. Pad sides, z= +/- ½ L, Film pressure P> P = PS (supply pressure) P = Pa = 0 (ambient pressure) P=Pa (ambient) Major assumption: Viscosity is average across film thickness Laminar flow Pcav (oil cavitation pressure) Reynolds Equation for laminar thin film flows 5 Finite Element solution of Reynolds Equation n pe P0e i P0ei i 1 Flow domain n pe k j 1 e ij P0ej q ie f i e e e h k i , x j , x i , z j , z dx dz 12 e R e e fi h i . x dx dz 2 e 3 e ij Nodal pressures z e q Flow rate x=R Finite element model for pressure field in fluid film bearing FEM for solution of Pressure field Assemble system of equations, impose boundary conditions and solve 6 Thin Film Lubrication: Thermal Energy Transport Nomenclature h h h T: film temperature 1 1 1 U Udy ; W Wdy ; T Tdy h : film thickness h0 h0 h0 U,W: circ. & axial flow velocities , r, Cp : viscosity & density, specific heat hB, hJ : heat convection coefficients TB, TJ : bearing and journal temperatures : journal speed Major assumption: Integrate energy transport equation across film. Neglect temperature variations. Use bulkflow velocities and temperature. Laminar flow r Cp U h T W h T hB T TB hJ T TJ z R 2 2 2 12 R R CONVECTION + DIFFUSION= DISSIPATION 2 U W h 12 2 (Energy Disposed) = (Energy Generated) 7 Thermal Energy Transport in thin film flows Thin Film Lubrication: Thermal Energy Transport T=T TN West face P ap TP aw TW ae TE an TN S P QJB East face ½L Source of energy Sink of energy Numerical solution uses Upwind scheme. a’s are a function of flow rates: z Pressure Finite element rhU)e|e+1 rhU)w|e z L/2 Fe 0 Pressure node x=R TW 0 r hU dz , F w e L/2 r hU dz , w 0 e TP TE F r hW z L / 2 dx F e F w n w 8 Algebraic equation for transport of film temperature Heat Convection Models Ti Ts Heat flow: Q = h A (TS – Ti) A: wetted area for heat transfer h: heat convection coefficient, a function of Nusselt #, oil conductivity and hydraulic diameter (=clearance). 1 koil ; Nu f Re, Pr Nusselt # =depends on flow conditions (Prandtl # and Reynolds #) DH Cp r Rc Pr ; Re k oil Reynolds/Colburn Analogy), Nu=3 Pr0.33 2 Kays and Crawford - constant wall temperature, Nu =7.54 3 Kays and Crawford - constant wall heat flux, Nu =8.22 4 Haussen - thermally developing constant wall temperature, Nu >3.657 5 Shah - 6 Stephan - Simultaneous developing, constant wall temp, Nu >3.66 7 9 Stephan - Simultaneous developing constant wall heat flux, Nu > 4.364 h Nu thermally developing constant wall heat flux, Nu > 4.364 Thermal mixing at pad inlet Nomenclature F : flow T : temperature l : thermal mixing coefficient = 0.80 (TYP) Finlet = Fsupply + l Fup Flow balance Finlet Tinlet = Fsupply Tsupply + l Fup Tup Energy balance R Fup Tup Upstream pad Finlet Tinlet Fsupply Tsupply Thermal mixing at pad trailing edge Downstream pad 10 Status of computational code Fortran code : complete – L. San Andres full development graduate student worked for 4 months (no progress) GUI (Excel interface) – To be done – NO student available (UGS quit after 1 month) integration with XLTRC2 expected by end of summer 08. Examples for calibration: (pressure and temperature fields) oil 360 deg journal bearing Dowson et al. (1966) Ferron, Frene, Boncompain (1983) Costa, Fillon (2000 2003) oil two pad arc journal bearing Costa, Fillon (2000 2003) Brito, Fillon (2006, 2007) Pressure dam bearing Childs et al (2007, 2008) Load capacity & force coefficients 11 Example 1 : Ferron bearing (1983) Journal diameter Bearing Length Radial clearance Groove width groove arc length Lubricant Density Specific Heat Thermal conductivity Viscosity at 40 C Visc-temp coefficient Inlet oil temperature Inlet oil pressure Load range Speed range Prandtl No Load No Diffusivity Sommerfeld # D L c 100 80 0.152 18 Cp 860 2000 0.13 0.0277 0.034 40 0.7 1kN-10 kN 1-4 kRPM 426 mm mm mm mm deg kg/m3 J/kg-C W/m-C Pa.s 1/C C bar Ferron,J., Frene, J., and R. Boncompain, 1983, “A Study of the Thermohydrodynamic Performance of a Plain Journal Bearing Comparison Between Theory and Experiments”, ASME Journal of Tribology, Vol. 105, pp. 422-428, Load 23.98 7.55814E-08 m2/s S N LDR W 2 C 12 Ferron et al. bearing (1983) Load Test data Film temperature temperature Temperature (deg C) 50 48 46 44 42 40 0 * 60 90 120 150 180 210 240 270 300 330 360 angle (deg) pressurepressure Midplane 2 Pressure (MPa) 30 1.5 1 0.5 0 0 30 * 60 90 120 150 180 210 240 270 300 330 360 angle (deg) p * Pressure and temperature fields – 4 kRPM, 6 kN 13 Ferron et al. bearing (1983) Load 0.9 2000 3000 4000 Test data eccentricity ratio 0.8 RPM 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.0 0.1 0.2 0.3 0.4 0.5 Sommerfeld # 0.6 S 0.7 N LD R S 0.8 0.9 2 L W N C D R W 2 C 14 Eccentricity ratio (e/c) vs Sommerfeld # Ferron et al. bearing (1983) Load Test data 45 40 2000 3000 4000 RPM Peak pressure 35 30 25 20 15 10 5 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 eccentricity ratio 15 Peak film pressure vs. eccentricity ratio (e/c) Ferron et al. bearing (1983) Load 14 deg C Test data Peak temperature rise 12 10 8 6 4 2 Tsupply=40 C 2000 3000 RPM 4000 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 eccentricity ratio 16 Peak film temperature vs. eccentricity ratio (e/c) Example 2: two axial groove bearing Journal diameter Bearing Length Radial clearance preload Feed groove width Pad arc length Lubricant Density Specific Heat Thermal conductivity Viscosity at 40 C Visc-temp coefficient Inlet oil temperature Inlet oil pressure Load range Speed range Prandtl No D L c rp 100 80 0.085 0 70 162 r 870 2000 0.13 0.0293 0.032 35,40,50 0.7,1.4, 2.1 1kN-10 kN 1-4 kRPM 451 Cp k mm mm mm mm mm deg kg/m3 J/kg-C W/m-C Pa.s 1/C C bar Brito,F.P., Miranda, A.S., Bouter, J., and Fillon, M., Frene, J., and R. Boncompain, 2007, “Experimental investigation on the influence of Supply temperature and Supply Pressure on the Performance of a Two-Axial Groove Hydrodynamic Journal Bearing”, ASME Journal of Tribology, Vol. 129, pp. 98-105, Load 17 Brito et al. bearing (2007) Load Film temperature Midplane pressure Journal locus Test data 3 3.5 Predictions 70 70 temperature (C) 2 2 1.5 1 1 0.5 temperature (C) 2.5 0 65 65 Pressure (MPa) e/c=0.43 f 56 deg 1.35 kW 3.0 LPM 28 bar max Pressure (MPa) 3 60 55 50 0 0 45 90 135 180 225 270 315 360 45 90 135 180 225 270 315 360 * angle (deg) angle (deg) 40 55 50 45 45 0 60 0 40 0 45 90 135 180 225 270 315 360 45 90 135 180 225 270 315 360 angle (deg) angle (deg) Pressure and temperature fields – 4 kRPM, 10 kN * 18 Example 3 – Pressure dam bearing Journal diameter D 117.1 Bearing Length L 76.2 Radial clearance c 0.142 pad arc 170 Dam arc length D 130 LD width (0.75 L) 57.1 depth 0.4 LR Reilef groove width 19.05 depth 0.1 Lubricant ISO VG 32 Density r 860 Specific Heat Cp 2000 Thermal conductivity k 0.13 Viscosity at 45 C 0.028 Visc-temp coefficient 0.034 Inlet oil temperature 40-55 ? Inlet oil pressure N/A Load range 0.1-12 Speed range 4,6,8,10,12 mm mm mm deg deg mm mm mm mm Al-Jughaiman, and Childs, D., 2007, “Static and Dynamic Characteristics for a Pressure-Dam Bearing”, ASME Paper GT2007-25577 W Y X kg/m3 J/kg-C W/m-C Pa.s 1/C C bar e kN krpm Missing details on bearing geometry, lubricant and feed conditions. Even with test data at hand, not able to reproduce test results in paper. VERY PECULIAR 19 THERMAL EFFECTS Status of computational code Fortran code : complete GUI (Excel interface) – in progress Delivery at end of Summer 08: a) Complete Excel GUI(s) and interface with XLTRC2 b) Enhance code to include prediction of fluid inertia (mass) coefficients c) MAY Include changes in operating clearance due to thermal effects and shaft rotation Upgrade to XLPresDm® 20 Example 3 – Pressure dam bearing 12 Power Loss (kW) 10 8 6 4 4000 rpm 6000 rpm 8000 rpm 10000 rpm 12000 rpm 2 0 0 250 500 750 1000 1250 1500 Unit Load (kPa) GT2007-25577 Power loss 21 Example 3 – Pressure dam bearing TAMU Pressure Dam Bearing with relief track 145 psi 1.0 eccentricity ratio (e/c) 0.9 0.8 0.7 0.6 0.5 0.4 4 krpm (pred) 10 krpm (pred) 4 krpm (test data) 10 krpm (test data) 12 krpm (pred) test data 12 krpm W Y 0.3 X 0.2 e 0.1 0.0 0 200 400 600 800 1000 1200 1400 Unit Load (W/LD) [kPa] Journal eccentricity vs specific pressure 22 Example 3 – Pressure dam bearing TAMU Pressure Dam Bearing 90 Attitude angle (deg) W 80 Y X 70 e 60 50 40 30 4 krpm (pred) 10 krpm (pred) 4 krpm (test) 10 krpm (test) 20 10 145 psi 0 0 200 400 600 800 1000 1200 1400 Unit Load (W/LD) [kPa] Attitude angle vs specific pressure 23 Example 3 – Pressure dam bearing W TAMU Pressure Dam Bearing Y X Stiffness [MN/m] 1200 e KYY 1000 800 600 400 4 krpm (pred) 10 krpm (pred) test 4 krpm test 10 krpm 200 0 0 200 400 600 800 1000 1200 1400 145 psi Unit Load (W/LD) [kPa] Direct stiffness KYY vs specific pressure 24 Example 3 – Pressure dam bearing TAMU Pressure Dam Bearing W 145 psi Y 250 KXX 200 Stiffness [MN/m] X e 150 100 4 krpm (pred) 10 krpm (pred) 4 krpm (test) 10 krpm (test) 50 0 0 200 400 600 800 1000 1200 1400 Unit Load (W/LD) [kPa] Direct stiffness KXX vs specific pressure 25 Example 3 – Pressure dam bearing W TAMU Pressure Dam Bearing with relief track Y 145 psi X 180 KXY 160 Stiffness [MN/m] e 140 4 krpm (pred) 10 krpm (pred) test 4 krpm test 10 krpm 120 100 80 60 40 20 0 -20 0 200 400 600 800 1000 1200 1400 Unit Load (W/LD) [kPa] Cross stiffness KXY vs specific pressure 26 Example 3 – Pressure dam bearing W TAMU Pressure Dam Bearing Note: prediction changed sign 600 X 145 psi KYX 500 Stiffness [MN/m] Y e 400 300 200 4 krpm (pred) 10 krpm (pred) test 4 krpm test 10 krpm 100 0 0 200 400 600 800 1000 1200 1400 Unit Load (W/LD) [kPa] Cross stiffness KYX vs specific pressure 27 Example 3 – Pressure dam bearing TAMU Pressure Dam Bearing W Y 2000 CYY 1800 Damping [kN.s/m] 4 krpm (pred) 10 krpm (pred) test 4 krpm test 10 krpm 1600 1400 X e 1200 1000 800 600 400 200 145 psi 0 0 200 400 600 800 1000 1200 1400 Unit Load (W/LD) [kPa] Direct DAMPING CYY vs specific pressure 28 Example 3 – Pressure dam bearing TAMU Pressure Dam Bearing W 300 X CXX 250 Damping [kN.s/m] Y 145 psi e 200 150 100 4 krpm (pred) 10 krpm (pred) test 4 krpm test 10 krpm 50 0 0 200 400 600 800 1000 1200 1400 Unit Load (W/LD) [kPa] Direct DAMPING CXX vs specific pressure 29 Example 3 – Pressure dam bearing TAMU Pressure Dam Bearing 4 krpm (pred) 10 krpm (pred) test 4 krpm test 10 krpm 600 CXY Damping [kN.s/m] 500 W Y X e 400 300 200 100 145 psi 0 0 200 400 600 800 1000 1200 1400 Unit Load (W/LD) [kPa] Cross DAMPING CXY vs specific pressure 30 Example 3 – Pressure dam bearing TAMU Pressure Dam Bearing Note: prediction changed sign W Y Damping [kN.s/m] 700 4 krpm (pred) 10 krpm (pred) test 4 krpm test 10 krpm CYX 600 500 X e 400 300 200 100 145 psi 0 0 200 400 600 800 1000 1200 1400 Unit Load (W/LD) [kPa] Cross DAMPING CYX vs specific pressure 31 Example 3 – Pressure dam bearing TAMU Pressure Dam Bearing W Y 0.50 WFR Whirl frequency ratio 0.45 X 4 krpm (pred) 10 krpm (pred) 0.40 e 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 0 200 400 600 800 1000 1200 1400 Unit Load (W/LD) [kPa] Whirl frequency ratio WFR vs specific pressure 32 Continuation Proposal Budget from TRC for 2008/2009: Support for programmer (GUI) Total Cost: $ 25,000 $ 25,000 a) Complete Excel GUI(s) and interface with XLTRC2 b) Enhance code to include prediction of fluid inertia (mass coefficients) c) Include changes in operating clearance due to thermal effects and shaft rotation BUDGET for Upgrade to XLPresDm® 33 Thin Film Lubrication: Thermal Energy Transport Major assumption: In oil lubricated bearings, temperature does not vary across axial length, T=T. TN Fn L/2 Tn x Fw Te Fe TW TP TE z Tw 0 Midplane (symmetry line) x=R Fs =0 (W=0) Integrate energy transport equation along axial length to obtain Fe – Fw + Fn =0 34 Energy transport equation (temperature invariant along axial direction) Thin Film Lubrication: Thermal Energy Transport . In oil lubricated bearings, T=T L/2 e L/2 e L/2 e w r CP T hU dz T w hU dx Tn H W z L / 2 dx S Qs dz dx 0 w 0 0 Thermal energy advected by fluid flow = Mechanical Power – Energy conducted to B &J 2 12 2 2 R 2 R S U W Mechanical energy dissipation h 12 2 Qs hB T TB hJ T TJ h2 P W ; 12 z h2 P R U 12 x 2 Heat flow into bearing and journal Axial and circumferential (bulk-flow) velocities Thermal energy transport equation 35 TRC 2008 Questions ???? 36 Ferron et al. bearing (1983) Load Test data Ferron et al. bearing (1983), 0.9 eccentricity ratio (e/c) 0.8 0.7 0.6 0.5 0.4 0.3 2 krpm 0.2 3 krpm kRPM 0.1 4 krpm 0.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 Load (kN) 37 Journal eccentricity (e/c) vs. applied static load TRC 2008 38 Perturbation analysis of flow equations Consider small amplitude journal and pad motions about static equilibrium position (SEP) An applied external static load (Wo) determines the rotor equilibrium position fo (eX, eY)o with steady pressure field Po and film thickness ho Fo eY eY Y clearance circle e eo eX t eX ef r Let the journal whirl with frequency and small amplitude motions (eX, eY) about the equilibrium position. Hence e X e Xo e X e it , eY eYo eY e it , 39 Small amplitude journal motions about an equilibrium position Force coefficients Bearing dynamic reaction forces: FX K XX F K Z Y YX Y Y X K XY X C XX K YY B Y CYX C XY X CYY B Y X Displacements (X,Y) Measure of stability: Whirl frequency ratio WFR = Kxy/(Cxx Stiffness coefficients Damping coefficients Typically: No fluid inertia accounted for Force coefficients independent of excitation frequency for incompressible fluid. Functions of speed & load 40 Bearing force coefficients Dynamic reacion forces: FX K XX F K Y YX K XY K YY S X C XX Y CYX Stiffness coefficients C XY CYY S X M XX Y M YX Damping coefficients M XY M YY S X Y Inertia coefficients Y Y Z X X 41 Idealization of thermal energy transport Casing (or ambient) TBouter Bearing Thermal Energy conducted to bearing TB Exit flow carrying thermal energy Film T Mechanical power (P ) by film shearing ~ Torque x Thermal Energy conducted to / from journal Journal TJ L 42