Transcript Document

VIII International Workshop
to The Memory of Professor V.P. Sarantsev
Status of NICA Project
Nuclotron-based Ion Collider fAcility
I.Meshkov
for NICA Collaboration
Alushta, Crimea
September 1, 2009
1
Contents
Introduction:
Physics case of NICA
Development of the NICA Concept and Technical Design Report
1. NICA scheme & layout
2. Heavy ions in NICA
2.1. Operation regime and parameters
2.2. Collider
3. Polarized particle beams in NICA
4. NICA project status and nearest plans
Conclusion
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
2
Introduction: Physics case of the NICA
GSI/JINR/BNL
2005 - 2009
Nuclei
International co-operation:
Round Table Discussions I, II, III
n/n_nuclear
(n_nuclear = 0.16 fm-3)
International co-operation:
I.Meshkov, Status of NICA Project
Round Table IV:
3
VIII Sarantsev Seminar Alushta,
September
1, 2009
September
9 – 12,
2009, JINR, Dubna
http://theor.jinr.ru/meetings/2008/roundtable/
JINR, Dubna, 2005, 2006, 2008
Introduction: Development of the NICA Concept and TDR
January 2008
NICA CDR
MPD LoI
January 2009
NICA CDR (Short version)
Conceptual Design Report
of
Nuclotron-based Ion Collider
fAcility (NICA)
(Short version)
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
4
Introduction: Development of the NICA Concept and TDR
August 2009
NICA TDR (volumes I & II)
Ускорительно-накопительный
комплекс NICA
Ускорительно-накопительный
комплекс NICA
(Nuclotron-based Ion Collider fAcility)
(Nuclotron-based Ion Collider fAcility)
Технический проект
Технический проект
Том I
Том II
Дубна, 2009
Дубна, 2009
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
5
Introduction: Development of the NICA Concept and TDR
Approved by
Director of JINR
academician A.N.Sisakian
____________________
Nuclotron-based Ion Collider fAcility (NICA)
Technical Design Report
"____ " 2009 г.
Project leaders: A.Sisakian,A.Sorin
TDR has been developed by the NICA collaborationp:
JINR
Physicists and engineers: N.Agapov, E.Ahmanova, V.Alexandrov, A.Alfeev, O.Brovko, A.Butenko, E.D.Donets,
E.E.Donets, A.Eliseev, A.Govorov, I.Issinsky, E.Ivanov, V.Karpinsky, V.Kekelidze, G.Khodzhibagiyan, A.Kobets,
V.Kobets, A.Kovalenko, O.Kozlov, A.Kuznetsov, V.Mikhailov, V.Monchinsky, A.Sidorin, A.Smirnov, A.Olchevsky,
R.Pivin, Yu.Potrebennikov, A.Rudakov, A.Smirnov, G.Trubnikov, V.Shevtsov, B.-R.Vasilishin, V.Volkov, S.Yakovenko,
V.Zhabitsky
Designers: V.Agapova, G.Berezin, V.Borisov, V.Bykovsky, A.Bychkov, T.Volobueva, E.Voronina, S.Kukarnikov,
T.Prakhova, S.Rabtsun, G.Titova, Yu.Tumanova, A.Shabunov, V.Shokin
IHEP, Protvino
O.Belyaev, Yu.Budanov, S.Ivanov, A.Maltsev, I.Zvonarev,
INR RAS, Troitsk
V.Matveev, A.Belov, L.Kravchuk
Budker INP, Novosibirsk V.Arbuzov, Yu.Biriuchevsky, S.Krutikhin, G.Kurkin, B.Persov, V.Petrov, A.Pilan
Chief engineer of the Project V.Kalagin,
Chief designer of the Project N.Topilin
Editors: I.Meshkov, A.Sidorin
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
6
Introduction: Development of the NICA Concept and TDR
Since publication of the 1-st version of the NICA CDR
The Concept was developed, the volumes I and II of the
TDR have been completed:
Volume I – Part 1, General description
Part 2, Injector complex
Volume II – Part 3, Booster-Synchrotron
A brief review of the Project, its status and plans of
realization are presented here.
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
7
Introduction: Development of the NICA Concept and TDR
The Project goals formulated in NICA CDR
are the following:
1a) Heavy ion colliding beams 197Au79+ x 197Au79+ at
sNN = 4  11 GeV (1  4.5 GeV/u ion kinetic energy )
at
Laverage= 11027 cm-2s-1 (at sNN = 9 GeV)
1b) Light-Heavy ion colliding beams of the energy range and luminosity
2) Polarized beams of protons and deuterons:
pp sNN = 12  25 GeV (5  12.6 GeV kinetic energy )
dd sNN = 4  13.8 GeV (2  5.9 GeV/u ion kinetic energy )
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
8
1. NICA scheme & layout
Spin Physics
Detector (SPD)
Synchrophasotron yoke
2.3 m
4.0 m
Booster
Nuclotron
MPD
Existing beam lines
(solid target exp-s)
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
9
1. NICA scheme & layout (Contnd)
“Old” Linac LU-20
Booster
KRION + “New” HILAC
Nuclotron
Collider
SPD
MPD
Beam dump
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
10
2. Heavy ions in NICA
2.1. Operation regime and parameters
Injector: 2×109 ions/pulse of 197Au32+
at energy of 6.2 MeV/u
Collider (45 Tm)
Storage of
17 (20) bunches  1109 ions per ring
at 14.5 GeV/u,
electron and/or stochastic cooling
Booster (25 Tm)
1(2-3) single-turn injection,
storage of 2 (4-6)×109,
acceleration up to 100 MeV/u,
electron cooling,
acceleration
up to 600 MeV/u
Stripping (80%)
197Au32+

197Au79+
IP-1
Two
superconducting
collider rings
IP-2
2х17 (20)
injection cycles
Nuclotron (45 Tm)
injection of one bunch
of 1.1×109 ions,
acceleration up to
14.5 GeV/u max.
I.Meshkov, Status of NICA Project
Bunch compression (RF phase
VIII Sarantsev Seminar Alushta, September 1, 2009
jump)
11
2. Heavy ions in NICA (Contnd)
2.1. Operation regime and parameters
Bunch parameters dynamics in the injection chain
Stage
E
unnorm
p/p
lbunch
m
Intensity
loss,%
Space
charge
MeV/u
mmmrad
Injection (after
6.2
10
1.3E-3
6
10
0.022
After cooling (h=1)
100
2.45
3.8E-4
7.17
<10
0.016
At extraction
600
0.89
3.2E-4
3.1
Injection
(after stripping)
594
0.89
3.4E-4
3.1
<20
0.051
After acceleration
3500
0.25
1.5E-4
2
<1
0.0075
At extraction
3500
0.25
110-3
0.5
Loss = 40%
0.03
bunching on 4th
harmonics
Q
0.0085
Nextr= 1E9
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
12
2. Heavy ions in NICA (Contnd)
2.1. Operation regime and parameters
Bunch compression in Nuclotron
A.Eliseev
Phase space portraits of the bunch
Bunch rotation by “RF amplitude jump” 15  120 kV
E – E0 , 2 GeV/div
2
1
, 10 deg./div
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
13
2. Heavy ions in NICA (Contnd)
2.1. Operation regime and parameters
Bunch compression in Nuclotron
Phase space portraits of the bunch (RF “phase jump”  = 1800)
E – E0 , 2 GeV/div
A.Eliseev
, 50 deg./div
E_r.m.c.
_r.m.s.
200 MeV/div.
5 deg./div.
(1 deg.  0.7 m)
_r.m.s.
0.5 eVsec/div
time, 0.1 sec/div.
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
14
2. Heavy ions in NICA (Contnd)
2.1. Operation
34 injection cycles to Collider rings
9 ions 197Au79+ per cycle
of 110
regime
and
parameters
electron
cooling
B(t), arb. units
1.710
ions/ring
Time Table of The Storage
Process
10
Booster magnetic field
2
1,5
Extraction,
stripping to 197Au79+
1
0,5
0
1 (2-3) injection cycles,
electron cooling (?)
0
2
t, [s]
4
6
Nuclotron magnetic field
2
B(t), arb. units
1,5
bunch compression,
extraction
1
0,5
injection
0
0
2 t, [s] 4
6
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
15
2. Heavy ions in NICA (Contnd)
2.2. Collider
E_cooler
Injection
channels
MPD
I.Meshkov, O.Kozlov, V.Mikhailov,
A.Sidorin, A.Smirnov, N.Topilin
Spin
rotator
S_Cool PU
x, y, long
Upper ring
10 m
x,y kicker
RF
Long. kicker
SPD
Beam dump
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
16
2. Heavy ions in NICA (Contnd)
2.2. Collider
General Parameters
Ring circumference, [m]
251.52
45.0
B max [ Tm ]
Ion kinetic energy (Au79+), [GeV/u]
Dipole field (max),
1.0  4.56
[ T ]
Quad gradient (max),
4.0
[ T/m ]
Number of dipoles / length
29.0
24 / 3.0 m
Number of vertical dipoles per ring
Number of quads / length
2 x 4
32 / 0.4 m
Long straight sections:
number / length
2 x 48.0 m
Short straight sections:
number / length,
4 x 8.8 m
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
17
2. Heavy ions in NICA (Contnd)
2.2. Collider General parameters (Contnd)
βx_max / βy_max in FODO period, m
16.8 / 15.2
Dx_max / Dy_max in FODO period, m
5.9 / 0.2
βx_min / βy_min in IP, m
0.5 / 0.5
Dx / Dy in IP, m
0.0 / 0.0
Free space at IP (for detector)
9 m
Beam crossing angle at IP
0
Betatron tunes Qx / Qy
5.26 / 5.17
Chromaticity Q’x / Q’y
Transition energy, _tr / E_tr
RF system
Vacuum,
harmonics
amplitude, [kV]
[ pTorr ]
-12.22 / -11.85
!
4.95 / 3.012 GeV/u
102
100
100  10
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
18
2. Heavy ions in NICA (Contnd)
2.2. Collider General parameters (Contnd)
Collider beam parameters and luminosity
Energy, GeV/u
1.0
3.5
Ion number per bunch
1E9
1E9
Number of bunches per ring
17
17
Rms unnormalized beam emittance, ∙mm mrad
3.8
0.25
1E-3
1E-3
0.3
0.3
Rms momentum spread
Rms bunch length, m
Luminosity per one IP, cm-2∙s-1
Incoherent tune shift Qbet
Beam-beam parameter 
IBS growth time, s
0.75E26 1.1E27
0.056
0.047
0.0026
0.0051
650
50
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
19
2. Heavy ions in NICA (Contnd)
2.2. Collider (Contnd)
Two injection schemes are considered:
1) bunch by bunch injection, 17 bunches:
 bunch number is limited by kicker pulse duration,
 bunch compression in Nuclotron is required (!)
 Electron and/or stochastic cooling is used for luminosity
preservation.
2) Injection and storage with barrier bucket technique and
cooling of a coasting (!) beam, 20 bunches,
 bunch number is limited by interbunch space in IP straight section,
 bunch compression in Nuclotron is NOT required (!)
 Electron and/or stochastic cooling for storage and luminosity
preservation, bunch formation after storage are required.
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
20
2. Heavy ions in NICA (Contnd)
2.2. Collider (Contnd)
Barrier Bucket Method
V(t)
Cavity
voltage
Ion storage with “barrier bucket” (BB) method:
Periodic voltage pulses applied to a low quality cavity (“meander”)
when stochastic or electron cooling is ON.
Time domain
time
Revolution period
V(t)
Cavity
(p)ion
Phase domain
Injected
bunch
Stack
voltage
phase
0
2
Revolution period
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
21
2. Heavy ions in NICA (Contnd)
2.2. Collider
(Contnd)
Barrier Bucket Method
Particle motion in “the phase domain”
 
V(t)
Cavity
voltage
p d

0
 dp
Phase domain
(p)ion
phase
2
0
Separatrix:
p
p

ZeV BB  BB

2
2
  Mc  
At BB = 2 the Formula
coincides with that one
for harmonic RF
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
22
2. Heavy ions in NICA (Contnd)
2.2. Collider
(Contnd)
Barrier Bucket Method (Contnd)
Ion trajectory in the phase space (p, )
V(t)
Cavity
voltage
p  (p)separatrix
(p)ion
Cooling is ON
0
Stack
_stack
2

Unstable phase area
(injection area)
In reality RF voltage pulses can be (and are actually) of nonrectangular shape
The method was tested experimentally at ESR (GSI)
with electron cooling (2008).
NICA: Trevolution = 0.85  0.96 s, VBB  16 kV
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
23
2. Heavy ions in NICA (Contnd)
2.2. Collider (Contnd)
Collider luminosity vs Ion Energy
Two outmost cases at QLasslett = Const :
N ion ( E ) 
1) L(E) = Const 
2) Nion(E) = Const 
10 2
 norm 
L(E)
1
 
2
1

3
!
,  norm 
2
1.6
1.6
;
.
N_ion/bunch vs Energy
[1E9]
N1 ( E)
10
L2( E)
1.2
N2 ( E)
_norm(E)
0.1
1.0
[∙mm∙mrad]
0.8
1_norm ( E)
0.01
0.50.5
5
1.4
L1( E)
0.01
 
3
, L( E )   2  3
[1E27 cm-2∙s-1]
1.0
1
1.5
2.5
E
3.5
0.8
1.0
2_norm ( E)
4.5
4.5
0.5
0.5
1.5
E
2.5
3.5
E, GeV/u
E, GeV/u
0.1
0.5
1.5
E
2.5
3.5
4.5
E, GeV/u
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
24
4.5
4.5
2. Heavy ions in NICA (Contnd)
2.2. Collider (Contnd)
! IBS Heating and cooling – luminosity evolution at electron cooling
B [kG]
6E+276
8
Luminosity
5E+27
BETACOOL
simulation
[1E27 cm-24E+27
∙s-1] 4
6
3E+27
2E+272
4
1E+27
2
00
0
5
10
15
20
25
reference time, sec
T
= 10 eV
e
Parameters
ion beam: 197Au79+ at 3.5 GeV/u, initial =0.5 ∙mm∙mrad, (p/p) = 1∙10-3
electron beam: Ie = 0.5 A, re = 2 mm, Te|| = 5 meV;  = 0.024 (6 m/250
m)
Status of NICA Project
Conclusion: Electron I.Meshkov,
magnetization
is much more preferable 25
VIII Sarantsev Seminar
Alushta, September 1, 2009
2. Heavy ions in NICA (Contnd)
2.2. Collider: electron cloud effect
Electron cloud formation criteria
The necessary condition: ( N bunch )necessary
2
b
 2 
,
Zre l space
The sufficient condition (“multipactor effect”):
( N bunch )sufficient 
b

 crit
2
.
Zre
2me c
Here c is ion velocity, Z – ion charge number, b – vacuum chamber radius,
re – electron classic radius, lspace – distance between bunches,
me – electron mass, c – the speed of light,
crit ~ 1 keV – electron energy sufficient for secondary electron generation.
For NICA parameters (197Au79+ ions)
(Nbunch)necessary ~ 7108,
(Nbunch)sufficient ~ 6109.
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
26
2. Heavy ions in NICA (Contnd)
What is “old” and what is new?
2.2. Collider: the problems to be solved
 Collider SC dipoles with max B up to 4 T,
 Lattice and working point “flexibility”,
 RF parameters (related problem),
 Single bunch stability,
 Vacuum chamber impedance and multibunch stability,
 Stochastic cooling of bunched ion beam,
 Electron cooling at electron energy up to 2.5 MeV
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
27
3. Polarized particle beams in NICA
Yu.Filatov,
I.Meshkov
Longitudinal polarization formation
MPD
Spin rotator:
“Full Siberian snake”
Upper ring
SPD
B
“Siberian snake”: Protons, 1  E  12 GeV  (BL)solenoid  50 T∙m
of NICA
Project
Deuterons, 1 I.Meshkov,
E  5 Status
GeV/u
 (BL)
solenoid  140 T∙m
VIII Sarantsev Seminar
Alushta, September 1, 2009
28
3. Polarized particle beams in NICA (Contnd)
Longitudinal polarization formation (Contnd)
MPD
B
“Full Siberian snake”
Lower ring
SPD
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
29
3. Polarized particle beams in NICA (Contnd)
Polarized particle beams  injection
S
 
( BL )dipole
B ion
B
 1   a 
~ 900
Protons, 1  E  12 GeV  (BL)dipole  3 T∙m
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
Deuterons, 1  E  5 GeV/u  (BL)dipole  5.8 T∙m
30
3. Polarized particle beams in NICA (Contnd)
Parameters of polarized proton beams in collider
Energy, GeV
Proton number per bunch
Rms relative momentum spread
Rms bunch length, m
Rms
(unnormalized)
emittance, mmmrad
Beta-function in the IP, m
Lasslet tune shift
Beam-beam parameter
Number of bunches
Luminosity, cm-2∙s-1
5
12
6E10
1.5E10
10E-3
10E-3
1.7
0.8
0.24
0.027
0.5
0.5
0.0074
0.0033
0.005
0.005
10
10
1.1E30 1.1E30
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
31
3. Polarized particle beams in NICA (Contnd)
Polarized particle acceleration in Nuclotron:
Spin resonances
Type
of resonance
Resonance
condition
Number of resonances
at acceleration
p
d
0 – 12 GeV
0 – 6 GeV/u
1.Intrinsic res.
Qs = kp  Qz
6
0
2.Integer res.
Qs = k
25
1?
3.Nonsuperperiodic Qs = m  Qz , m  kp
44
2
4.Coupling res.
49
2
Qs = m  Qx
Q – betatron and spin precession tunes,
k, m – integers, p – number of superiods (8 for Nuclotron)
Power of the Spin resonances: P1,2 ~ 103∙P3,4
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
32
3. Polarized particle beams in NICA (Contnd)
Yu.Filatov
Polarized proton acceleration in Nuclotron:
Fast crossing of spin resonances
y
s
x
Bs
Bx
y 
x
Bx
Bs
Fast spin rotator
-y
y
y -2∙
s
Spin tune
dynamics
x
s
x
Bx
x y
y y
x
s
QS = x∙y/2 per 1 turn
Qs - Qres
t
Protons, 12 GeV, t = 100 s
BxLx = 0.18 T∙m, By∙Ly = 4.7 T∙m
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
33
4. NICA project status and plans
2009
2010
2011
2012
2013
2014
2015
KRION
LINAC + trans. channel
Booster: magnetic system
Booster + trans. channel
Nuclotron-M
Nuclotron-NICA
Transfer channel to Collider
Collider
Diagnostics
PS systems
Control systems
Infrastructure
R&D
design Manufctrng + mounting
mountg+commssiong
comms/operatn operation
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
34
4. NICA project status and plans
E.D.Donets
E.E.Donets
4.1. Injector
KRION - Cryogenic ion source of “electron-string” type developed
by E.Donets group at JINR. It is aimed to generation of heavy
KRION-6Tions (e.g.197Au32+).
multicharged
Cryostat & vac. chamber
To be commissioned in 2013.
HILAC – Heavy ion linac RFQ + Drift Tube Linac (DTL), under
design and construction (O.Belyaev & the Team, IHEP, Protvino).
To be commissioned in 2013.
RFQ
Electrodes
2H cavities
of "Ural" RFQ
(prototype)
Sector H-cavity
of “Ural” RFQ DTL
(prototype)
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
35
4. NICA project status and plans
Igor B. Issinsky
4.2. Booster
“Nuclotron-type” SC magnets for Booster
Superconducting Booster
in the magnet yoke
of The Synchrophasotron
A.Butenko
V.Mikhailov
G.Khodjibagiyan
N.Topilin
Nuclotron
Synchrophasotron yoke
Booster
Vladimir I.
Veksler
2.3 m
4.0 m
B = 25 Tm, Bmax = 1.8 T
1) 3 single-turn injections
Dismounting is in progress presently
2) Storage and electron cooling
of 8×109 197Au32+
To be commissioned in 2013.
3) Acceleration up to 440 MeV/u
4) Extraction & stripping
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
36
4. NICA project status and plans
4.2. Booster (Contnd)
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
37
4. NICA project status and plans
4.2. Booster (Contnd)
Beam injection
Heavy ion Linac
Electron cooling
system
2.3 m
4.0 m
Slow extraction
RF system
Experimental area
bld. 1 B
Fast extraction
Transfer to Nuclotron
See session 6, A.V.Eliseev: Boster-Nuclotron chain…
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
38
4. NICA project status and plans
4.2. Booster (Contnd)
Booster parameters
Circumference
214 m
Max B
27 T·m
Lattice type
FODO
Superperiods
4
Periods
24
Strait sections
2 x 8,6 m
Dipol magnets
40 x 2 m
Maximum
dipole field
1,8 T
Quadrupole
magnets
48 x 0.4 m
Vacuum
10-11 Torr
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
39
4. NICA project status and plans
4.2. Booster (Contnd)
Booster FODO lattice
Booster superperiod lattice functions
Working point
~ 5.8 / 5.85
Chromaticity
-6.5
p/p (max/min)
1E–3 / 8E–4
Norm.
emittance
1 ·mm·mrad
Beta function
(max)
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
14.5 m
40
4. NICA project status and plans
4.2. Booster (Contnd)
Ring equipment
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
41
4. NICA project status and plans
4.2. Booster (Contnd)
Injection & extraction
Injection scheme
Three pulses of single turn injection
Injection pulses
First
Extraction scheme
Second
Third
Closed orbit
displacement
t
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
42
4. NICA project status and plans
Vacuum system equipment
Varian TriScroll 300
pumps
42
Pfeiffer TMU 071 YP
DN63 CF HV pumps
28
Pfeiffer TMU 521 YP
DN160 CF HV pumps
14
Ion pumps 80l/s
6
IKR 060, DN40 CF
36
Pirani gauge
6
HV valves CE44
DN63 & DN160
70
Vacuum, Torr
4.2. Booster (Contnd)
Vacuum system
1E-11
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
43
4. NICA project status and plans
4.2. Booster (Contnd)
SC magnet technology
SC hollow cable
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
44
4. NICA project status and plans
4.2. Booster (Contnd)
Main Power Supply system
Main power supply unit:
Maximum current 12 kA
Voltage 250 V
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
45
4. NICA project status and plans
4.2. Booster (Contnd)
RF system (designed by Budker INP)
RF system parameters
Frequency
range,MHz
0.6  2.4
Maximum
voltage
amplitude,
kV
10
Number of
cavities
2
Cavity
length, m
1.4
RF tube type
EIMAC
4XC15.000A
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
46
4. NICA project status and plans
E.Ahmanova, I.Meshkov,
A.Smirnov, N.Topilin, Electron
Yu.Tumanova, S.Yakovenko
4.2. Booster (Contnd)
cooling system of the Booster
collector
“warm” solenoids
electron gun
cryogenic shield
superconducting solenoids
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
47
4. NICA project status and plans
4.2. Booster Contnd)
Electron cooling system of the Booster (Contnd)
e-gun
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
e-collector
48
4. NICA project status and plans
4.3. Nuclotron-NICA
G.Trubnikov & the Team
See the next talk, G.V.Trubnikov: Nuclotron-M…
To be designed,
constructed and commissioned:
1.Injection system (new HILAC)
2.RF system – new version with bunch compression
3.Dedicated diagnostics
4.Single turn extraction with fine synchronization
5.Polarized protons acceleration in Nuclotron
To be commissioned in 2013.
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
49
4. NICA project status and plans
4.4. Collider
Double ring collider; (B)max = 45 Tm, Bmax = 4 T
A.Kovalenko
G.Khodjibagiyan
“Twin magnets” for NICA collider rings
“Twin” dipoles
“Twin” quadrupoles
1 – Cos coils, 2 – “collars”, 3 – He header,
To be commissioned in 2014.
4 – iron yoke, 5 – thermoshield, 6 – outer jacket
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
50
4. NICA project status and plans
4.4. Collider
Electron cooling system of the Collider
Max electron energy, MeV
Max electron current, A
Solenoid magnetic field, T
I.Meshkov
A.Smirnov
S.Yakovenko
2.5
0.5
0.3
“Magnetized” electron beam
Solenoid type: “warm” at acceleration columns
superconducting at transportation and cooling sections
HV generator: Dynamitron type
3 m
To be commissioned in 2014.
Under development in collaboration with
- All-Russian Institute for
Electrotechnique (Moscow)
- FZ Juelich
- Budker INP
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
51
4. NICA project status and plans
“The ambush regiment” 4.5. “Collider 2T”
V.Kalagin
I.Meshkov
V.Mikhailov
G.Trubnikov
Collider:
C_Ring 380 м
From
Nuclotron
SPD
MPD
25 m
Dipoles 2 Тл
Luminosity?
G.Khodgibagiyan
I.Meshkov, Status of NICA Project
VIII Sarantsev Seminar Alushta, September 1, 2009
52
4. NICA project status and plans
4.5. NICA Collaboration
Budker INP






Booster RF system
Booster electron cooling
Collider RF system
Collider SC magnets
(expertise)
HV electron cooler
for collider
Electronics (?)
All-Russian Institute for Electrotechnique
HV Electron cooler
GSI/FAIR
SC dipoles for Booster/SIS-100
SC dipoles for Collider
IHEP (Protvino)
Injector Linac
FZ Jűlich (IKP)
HV Electron cooler
Stoch. cooling
Fermilab
HV Electron cooler
Stoch. cooling
BNL (RHIC)
Electron &
Stoch. Cooling
ITEP: Beam dynamics
in the collider
Corporation “Powder Metallurgy” (Minsk, Belorussia):
I.Meshkov, Status of NICA Project
Technology of TiN coating of vacuum
chamber walls for reduction of
VIII
Sarantsev
Seminar Alushta, September 1, 2009
secondary emission
53
Thank you for your attention!
I.Meshkov, NICA Project Status
ANKE/PAX Workshop
Dubna, June 22-26, 200954