Transcript Document
VIII International Workshop to The Memory of Professor V.P. Sarantsev Status of NICA Project Nuclotron-based Ion Collider fAcility I.Meshkov for NICA Collaboration Alushta, Crimea September 1, 2009 1 Contents Introduction: Physics case of NICA Development of the NICA Concept and Technical Design Report 1. NICA scheme & layout 2. Heavy ions in NICA 2.1. Operation regime and parameters 2.2. Collider 3. Polarized particle beams in NICA 4. NICA project status and nearest plans Conclusion I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 2 Introduction: Physics case of the NICA GSI/JINR/BNL 2005 - 2009 Nuclei International co-operation: Round Table Discussions I, II, III n/n_nuclear (n_nuclear = 0.16 fm-3) International co-operation: I.Meshkov, Status of NICA Project Round Table IV: 3 VIII Sarantsev Seminar Alushta, September 1, 2009 September 9 – 12, 2009, JINR, Dubna http://theor.jinr.ru/meetings/2008/roundtable/ JINR, Dubna, 2005, 2006, 2008 Introduction: Development of the NICA Concept and TDR January 2008 NICA CDR MPD LoI January 2009 NICA CDR (Short version) Conceptual Design Report of Nuclotron-based Ion Collider fAcility (NICA) (Short version) I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 4 Introduction: Development of the NICA Concept and TDR August 2009 NICA TDR (volumes I & II) Ускорительно-накопительный комплекс NICA Ускорительно-накопительный комплекс NICA (Nuclotron-based Ion Collider fAcility) (Nuclotron-based Ion Collider fAcility) Технический проект Технический проект Том I Том II Дубна, 2009 Дубна, 2009 I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 5 Introduction: Development of the NICA Concept and TDR Approved by Director of JINR academician A.N.Sisakian ____________________ Nuclotron-based Ion Collider fAcility (NICA) Technical Design Report "____ " 2009 г. Project leaders: A.Sisakian,A.Sorin TDR has been developed by the NICA collaborationp: JINR Physicists and engineers: N.Agapov, E.Ahmanova, V.Alexandrov, A.Alfeev, O.Brovko, A.Butenko, E.D.Donets, E.E.Donets, A.Eliseev, A.Govorov, I.Issinsky, E.Ivanov, V.Karpinsky, V.Kekelidze, G.Khodzhibagiyan, A.Kobets, V.Kobets, A.Kovalenko, O.Kozlov, A.Kuznetsov, V.Mikhailov, V.Monchinsky, A.Sidorin, A.Smirnov, A.Olchevsky, R.Pivin, Yu.Potrebennikov, A.Rudakov, A.Smirnov, G.Trubnikov, V.Shevtsov, B.-R.Vasilishin, V.Volkov, S.Yakovenko, V.Zhabitsky Designers: V.Agapova, G.Berezin, V.Borisov, V.Bykovsky, A.Bychkov, T.Volobueva, E.Voronina, S.Kukarnikov, T.Prakhova, S.Rabtsun, G.Titova, Yu.Tumanova, A.Shabunov, V.Shokin IHEP, Protvino O.Belyaev, Yu.Budanov, S.Ivanov, A.Maltsev, I.Zvonarev, INR RAS, Troitsk V.Matveev, A.Belov, L.Kravchuk Budker INP, Novosibirsk V.Arbuzov, Yu.Biriuchevsky, S.Krutikhin, G.Kurkin, B.Persov, V.Petrov, A.Pilan Chief engineer of the Project V.Kalagin, Chief designer of the Project N.Topilin Editors: I.Meshkov, A.Sidorin I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 6 Introduction: Development of the NICA Concept and TDR Since publication of the 1-st version of the NICA CDR The Concept was developed, the volumes I and II of the TDR have been completed: Volume I – Part 1, General description Part 2, Injector complex Volume II – Part 3, Booster-Synchrotron A brief review of the Project, its status and plans of realization are presented here. I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 7 Introduction: Development of the NICA Concept and TDR The Project goals formulated in NICA CDR are the following: 1a) Heavy ion colliding beams 197Au79+ x 197Au79+ at sNN = 4 11 GeV (1 4.5 GeV/u ion kinetic energy ) at Laverage= 11027 cm-2s-1 (at sNN = 9 GeV) 1b) Light-Heavy ion colliding beams of the energy range and luminosity 2) Polarized beams of protons and deuterons: pp sNN = 12 25 GeV (5 12.6 GeV kinetic energy ) dd sNN = 4 13.8 GeV (2 5.9 GeV/u ion kinetic energy ) I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 8 1. NICA scheme & layout Spin Physics Detector (SPD) Synchrophasotron yoke 2.3 m 4.0 m Booster Nuclotron MPD Existing beam lines (solid target exp-s) I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 9 1. NICA scheme & layout (Contnd) “Old” Linac LU-20 Booster KRION + “New” HILAC Nuclotron Collider SPD MPD Beam dump I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 10 2. Heavy ions in NICA 2.1. Operation regime and parameters Injector: 2×109 ions/pulse of 197Au32+ at energy of 6.2 MeV/u Collider (45 Tm) Storage of 17 (20) bunches 1109 ions per ring at 14.5 GeV/u, electron and/or stochastic cooling Booster (25 Tm) 1(2-3) single-turn injection, storage of 2 (4-6)×109, acceleration up to 100 MeV/u, electron cooling, acceleration up to 600 MeV/u Stripping (80%) 197Au32+ 197Au79+ IP-1 Two superconducting collider rings IP-2 2х17 (20) injection cycles Nuclotron (45 Tm) injection of one bunch of 1.1×109 ions, acceleration up to 14.5 GeV/u max. I.Meshkov, Status of NICA Project Bunch compression (RF phase VIII Sarantsev Seminar Alushta, September 1, 2009 jump) 11 2. Heavy ions in NICA (Contnd) 2.1. Operation regime and parameters Bunch parameters dynamics in the injection chain Stage E unnorm p/p lbunch m Intensity loss,% Space charge MeV/u mmmrad Injection (after 6.2 10 1.3E-3 6 10 0.022 After cooling (h=1) 100 2.45 3.8E-4 7.17 <10 0.016 At extraction 600 0.89 3.2E-4 3.1 Injection (after stripping) 594 0.89 3.4E-4 3.1 <20 0.051 After acceleration 3500 0.25 1.5E-4 2 <1 0.0075 At extraction 3500 0.25 110-3 0.5 Loss = 40% 0.03 bunching on 4th harmonics Q 0.0085 Nextr= 1E9 I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 12 2. Heavy ions in NICA (Contnd) 2.1. Operation regime and parameters Bunch compression in Nuclotron A.Eliseev Phase space portraits of the bunch Bunch rotation by “RF amplitude jump” 15 120 kV E – E0 , 2 GeV/div 2 1 , 10 deg./div I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 13 2. Heavy ions in NICA (Contnd) 2.1. Operation regime and parameters Bunch compression in Nuclotron Phase space portraits of the bunch (RF “phase jump” = 1800) E – E0 , 2 GeV/div A.Eliseev , 50 deg./div E_r.m.c. _r.m.s. 200 MeV/div. 5 deg./div. (1 deg. 0.7 m) _r.m.s. 0.5 eVsec/div time, 0.1 sec/div. I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 14 2. Heavy ions in NICA (Contnd) 2.1. Operation 34 injection cycles to Collider rings 9 ions 197Au79+ per cycle of 110 regime and parameters electron cooling B(t), arb. units 1.710 ions/ring Time Table of The Storage Process 10 Booster magnetic field 2 1,5 Extraction, stripping to 197Au79+ 1 0,5 0 1 (2-3) injection cycles, electron cooling (?) 0 2 t, [s] 4 6 Nuclotron magnetic field 2 B(t), arb. units 1,5 bunch compression, extraction 1 0,5 injection 0 0 2 t, [s] 4 6 I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 15 2. Heavy ions in NICA (Contnd) 2.2. Collider E_cooler Injection channels MPD I.Meshkov, O.Kozlov, V.Mikhailov, A.Sidorin, A.Smirnov, N.Topilin Spin rotator S_Cool PU x, y, long Upper ring 10 m x,y kicker RF Long. kicker SPD Beam dump I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 16 2. Heavy ions in NICA (Contnd) 2.2. Collider General Parameters Ring circumference, [m] 251.52 45.0 B max [ Tm ] Ion kinetic energy (Au79+), [GeV/u] Dipole field (max), 1.0 4.56 [ T ] Quad gradient (max), 4.0 [ T/m ] Number of dipoles / length 29.0 24 / 3.0 m Number of vertical dipoles per ring Number of quads / length 2 x 4 32 / 0.4 m Long straight sections: number / length 2 x 48.0 m Short straight sections: number / length, 4 x 8.8 m I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 17 2. Heavy ions in NICA (Contnd) 2.2. Collider General parameters (Contnd) βx_max / βy_max in FODO period, m 16.8 / 15.2 Dx_max / Dy_max in FODO period, m 5.9 / 0.2 βx_min / βy_min in IP, m 0.5 / 0.5 Dx / Dy in IP, m 0.0 / 0.0 Free space at IP (for detector) 9 m Beam crossing angle at IP 0 Betatron tunes Qx / Qy 5.26 / 5.17 Chromaticity Q’x / Q’y Transition energy, _tr / E_tr RF system Vacuum, harmonics amplitude, [kV] [ pTorr ] -12.22 / -11.85 ! 4.95 / 3.012 GeV/u 102 100 100 10 I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 18 2. Heavy ions in NICA (Contnd) 2.2. Collider General parameters (Contnd) Collider beam parameters and luminosity Energy, GeV/u 1.0 3.5 Ion number per bunch 1E9 1E9 Number of bunches per ring 17 17 Rms unnormalized beam emittance, ∙mm mrad 3.8 0.25 1E-3 1E-3 0.3 0.3 Rms momentum spread Rms bunch length, m Luminosity per one IP, cm-2∙s-1 Incoherent tune shift Qbet Beam-beam parameter IBS growth time, s 0.75E26 1.1E27 0.056 0.047 0.0026 0.0051 650 50 I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 19 2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) Two injection schemes are considered: 1) bunch by bunch injection, 17 bunches: bunch number is limited by kicker pulse duration, bunch compression in Nuclotron is required (!) Electron and/or stochastic cooling is used for luminosity preservation. 2) Injection and storage with barrier bucket technique and cooling of a coasting (!) beam, 20 bunches, bunch number is limited by interbunch space in IP straight section, bunch compression in Nuclotron is NOT required (!) Electron and/or stochastic cooling for storage and luminosity preservation, bunch formation after storage are required. I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 20 2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) Barrier Bucket Method V(t) Cavity voltage Ion storage with “barrier bucket” (BB) method: Periodic voltage pulses applied to a low quality cavity (“meander”) when stochastic or electron cooling is ON. Time domain time Revolution period V(t) Cavity (p)ion Phase domain Injected bunch Stack voltage phase 0 2 Revolution period I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 21 2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) Barrier Bucket Method Particle motion in “the phase domain” V(t) Cavity voltage p d 0 dp Phase domain (p)ion phase 2 0 Separatrix: p p ZeV BB BB 2 2 Mc At BB = 2 the Formula coincides with that one for harmonic RF I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 22 2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) Barrier Bucket Method (Contnd) Ion trajectory in the phase space (p, ) V(t) Cavity voltage p (p)separatrix (p)ion Cooling is ON 0 Stack _stack 2 Unstable phase area (injection area) In reality RF voltage pulses can be (and are actually) of nonrectangular shape The method was tested experimentally at ESR (GSI) with electron cooling (2008). NICA: Trevolution = 0.85 0.96 s, VBB 16 kV I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 23 2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) Collider luminosity vs Ion Energy Two outmost cases at QLasslett = Const : N ion ( E ) 1) L(E) = Const 2) Nion(E) = Const 10 2 norm L(E) 1 2 1 3 ! , norm 2 1.6 1.6 ; . N_ion/bunch vs Energy [1E9] N1 ( E) 10 L2( E) 1.2 N2 ( E) _norm(E) 0.1 1.0 [∙mm∙mrad] 0.8 1_norm ( E) 0.01 0.50.5 5 1.4 L1( E) 0.01 3 , L( E ) 2 3 [1E27 cm-2∙s-1] 1.0 1 1.5 2.5 E 3.5 0.8 1.0 2_norm ( E) 4.5 4.5 0.5 0.5 1.5 E 2.5 3.5 E, GeV/u E, GeV/u 0.1 0.5 1.5 E 2.5 3.5 4.5 E, GeV/u I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 24 4.5 4.5 2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) ! IBS Heating and cooling – luminosity evolution at electron cooling B [kG] 6E+276 8 Luminosity 5E+27 BETACOOL simulation [1E27 cm-24E+27 ∙s-1] 4 6 3E+27 2E+272 4 1E+27 2 00 0 5 10 15 20 25 reference time, sec T = 10 eV e Parameters ion beam: 197Au79+ at 3.5 GeV/u, initial =0.5 ∙mm∙mrad, (p/p) = 1∙10-3 electron beam: Ie = 0.5 A, re = 2 mm, Te|| = 5 meV; = 0.024 (6 m/250 m) Status of NICA Project Conclusion: Electron I.Meshkov, magnetization is much more preferable 25 VIII Sarantsev Seminar Alushta, September 1, 2009 2. Heavy ions in NICA (Contnd) 2.2. Collider: electron cloud effect Electron cloud formation criteria The necessary condition: ( N bunch )necessary 2 b 2 , Zre l space The sufficient condition (“multipactor effect”): ( N bunch )sufficient b crit 2 . Zre 2me c Here c is ion velocity, Z – ion charge number, b – vacuum chamber radius, re – electron classic radius, lspace – distance between bunches, me – electron mass, c – the speed of light, crit ~ 1 keV – electron energy sufficient for secondary electron generation. For NICA parameters (197Au79+ ions) (Nbunch)necessary ~ 7108, (Nbunch)sufficient ~ 6109. I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 26 2. Heavy ions in NICA (Contnd) What is “old” and what is new? 2.2. Collider: the problems to be solved Collider SC dipoles with max B up to 4 T, Lattice and working point “flexibility”, RF parameters (related problem), Single bunch stability, Vacuum chamber impedance and multibunch stability, Stochastic cooling of bunched ion beam, Electron cooling at electron energy up to 2.5 MeV I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 27 3. Polarized particle beams in NICA Yu.Filatov, I.Meshkov Longitudinal polarization formation MPD Spin rotator: “Full Siberian snake” Upper ring SPD B “Siberian snake”: Protons, 1 E 12 GeV (BL)solenoid 50 T∙m of NICA Project Deuterons, 1 I.Meshkov, E 5 Status GeV/u (BL) solenoid 140 T∙m VIII Sarantsev Seminar Alushta, September 1, 2009 28 3. Polarized particle beams in NICA (Contnd) Longitudinal polarization formation (Contnd) MPD B “Full Siberian snake” Lower ring SPD I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 29 3. Polarized particle beams in NICA (Contnd) Polarized particle beams injection S ( BL )dipole B ion B 1 a ~ 900 Protons, 1 E 12 GeV (BL)dipole 3 T∙m I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 Deuterons, 1 E 5 GeV/u (BL)dipole 5.8 T∙m 30 3. Polarized particle beams in NICA (Contnd) Parameters of polarized proton beams in collider Energy, GeV Proton number per bunch Rms relative momentum spread Rms bunch length, m Rms (unnormalized) emittance, mmmrad Beta-function in the IP, m Lasslet tune shift Beam-beam parameter Number of bunches Luminosity, cm-2∙s-1 5 12 6E10 1.5E10 10E-3 10E-3 1.7 0.8 0.24 0.027 0.5 0.5 0.0074 0.0033 0.005 0.005 10 10 1.1E30 1.1E30 I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 31 3. Polarized particle beams in NICA (Contnd) Polarized particle acceleration in Nuclotron: Spin resonances Type of resonance Resonance condition Number of resonances at acceleration p d 0 – 12 GeV 0 – 6 GeV/u 1.Intrinsic res. Qs = kp Qz 6 0 2.Integer res. Qs = k 25 1? 3.Nonsuperperiodic Qs = m Qz , m kp 44 2 4.Coupling res. 49 2 Qs = m Qx Q – betatron and spin precession tunes, k, m – integers, p – number of superiods (8 for Nuclotron) Power of the Spin resonances: P1,2 ~ 103∙P3,4 I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 32 3. Polarized particle beams in NICA (Contnd) Yu.Filatov Polarized proton acceleration in Nuclotron: Fast crossing of spin resonances y s x Bs Bx y x Bx Bs Fast spin rotator -y y y -2∙ s Spin tune dynamics x s x Bx x y y y x s QS = x∙y/2 per 1 turn Qs - Qres t Protons, 12 GeV, t = 100 s BxLx = 0.18 T∙m, By∙Ly = 4.7 T∙m I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 33 4. NICA project status and plans 2009 2010 2011 2012 2013 2014 2015 KRION LINAC + trans. channel Booster: magnetic system Booster + trans. channel Nuclotron-M Nuclotron-NICA Transfer channel to Collider Collider Diagnostics PS systems Control systems Infrastructure R&D design Manufctrng + mounting mountg+commssiong comms/operatn operation I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 34 4. NICA project status and plans E.D.Donets E.E.Donets 4.1. Injector KRION - Cryogenic ion source of “electron-string” type developed by E.Donets group at JINR. It is aimed to generation of heavy KRION-6Tions (e.g.197Au32+). multicharged Cryostat & vac. chamber To be commissioned in 2013. HILAC – Heavy ion linac RFQ + Drift Tube Linac (DTL), under design and construction (O.Belyaev & the Team, IHEP, Protvino). To be commissioned in 2013. RFQ Electrodes 2H cavities of "Ural" RFQ (prototype) Sector H-cavity of “Ural” RFQ DTL (prototype) I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 35 4. NICA project status and plans Igor B. Issinsky 4.2. Booster “Nuclotron-type” SC magnets for Booster Superconducting Booster in the magnet yoke of The Synchrophasotron A.Butenko V.Mikhailov G.Khodjibagiyan N.Topilin Nuclotron Synchrophasotron yoke Booster Vladimir I. Veksler 2.3 m 4.0 m B = 25 Tm, Bmax = 1.8 T 1) 3 single-turn injections Dismounting is in progress presently 2) Storage and electron cooling of 8×109 197Au32+ To be commissioned in 2013. 3) Acceleration up to 440 MeV/u 4) Extraction & stripping I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 36 4. NICA project status and plans 4.2. Booster (Contnd) I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 37 4. NICA project status and plans 4.2. Booster (Contnd) Beam injection Heavy ion Linac Electron cooling system 2.3 m 4.0 m Slow extraction RF system Experimental area bld. 1 B Fast extraction Transfer to Nuclotron See session 6, A.V.Eliseev: Boster-Nuclotron chain… I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 38 4. NICA project status and plans 4.2. Booster (Contnd) Booster parameters Circumference 214 m Max B 27 T·m Lattice type FODO Superperiods 4 Periods 24 Strait sections 2 x 8,6 m Dipol magnets 40 x 2 m Maximum dipole field 1,8 T Quadrupole magnets 48 x 0.4 m Vacuum 10-11 Torr I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 39 4. NICA project status and plans 4.2. Booster (Contnd) Booster FODO lattice Booster superperiod lattice functions Working point ~ 5.8 / 5.85 Chromaticity -6.5 p/p (max/min) 1E–3 / 8E–4 Norm. emittance 1 ·mm·mrad Beta function (max) I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 14.5 m 40 4. NICA project status and plans 4.2. Booster (Contnd) Ring equipment I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 41 4. NICA project status and plans 4.2. Booster (Contnd) Injection & extraction Injection scheme Three pulses of single turn injection Injection pulses First Extraction scheme Second Third Closed orbit displacement t I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 42 4. NICA project status and plans Vacuum system equipment Varian TriScroll 300 pumps 42 Pfeiffer TMU 071 YP DN63 CF HV pumps 28 Pfeiffer TMU 521 YP DN160 CF HV pumps 14 Ion pumps 80l/s 6 IKR 060, DN40 CF 36 Pirani gauge 6 HV valves CE44 DN63 & DN160 70 Vacuum, Torr 4.2. Booster (Contnd) Vacuum system 1E-11 I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 43 4. NICA project status and plans 4.2. Booster (Contnd) SC magnet technology SC hollow cable I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 44 4. NICA project status and plans 4.2. Booster (Contnd) Main Power Supply system Main power supply unit: Maximum current 12 kA Voltage 250 V I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 45 4. NICA project status and plans 4.2. Booster (Contnd) RF system (designed by Budker INP) RF system parameters Frequency range,MHz 0.6 2.4 Maximum voltage amplitude, kV 10 Number of cavities 2 Cavity length, m 1.4 RF tube type EIMAC 4XC15.000A I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 46 4. NICA project status and plans E.Ahmanova, I.Meshkov, A.Smirnov, N.Topilin, Electron Yu.Tumanova, S.Yakovenko 4.2. Booster (Contnd) cooling system of the Booster collector “warm” solenoids electron gun cryogenic shield superconducting solenoids I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 47 4. NICA project status and plans 4.2. Booster Contnd) Electron cooling system of the Booster (Contnd) e-gun I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 e-collector 48 4. NICA project status and plans 4.3. Nuclotron-NICA G.Trubnikov & the Team See the next talk, G.V.Trubnikov: Nuclotron-M… To be designed, constructed and commissioned: 1.Injection system (new HILAC) 2.RF system – new version with bunch compression 3.Dedicated diagnostics 4.Single turn extraction with fine synchronization 5.Polarized protons acceleration in Nuclotron To be commissioned in 2013. I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 49 4. NICA project status and plans 4.4. Collider Double ring collider; (B)max = 45 Tm, Bmax = 4 T A.Kovalenko G.Khodjibagiyan “Twin magnets” for NICA collider rings “Twin” dipoles “Twin” quadrupoles 1 – Cos coils, 2 – “collars”, 3 – He header, To be commissioned in 2014. 4 – iron yoke, 5 – thermoshield, 6 – outer jacket I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 50 4. NICA project status and plans 4.4. Collider Electron cooling system of the Collider Max electron energy, MeV Max electron current, A Solenoid magnetic field, T I.Meshkov A.Smirnov S.Yakovenko 2.5 0.5 0.3 “Magnetized” electron beam Solenoid type: “warm” at acceleration columns superconducting at transportation and cooling sections HV generator: Dynamitron type 3 m To be commissioned in 2014. Under development in collaboration with - All-Russian Institute for Electrotechnique (Moscow) - FZ Juelich - Budker INP I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 51 4. NICA project status and plans “The ambush regiment” 4.5. “Collider 2T” V.Kalagin I.Meshkov V.Mikhailov G.Trubnikov Collider: C_Ring 380 м From Nuclotron SPD MPD 25 m Dipoles 2 Тл Luminosity? G.Khodgibagiyan I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 52 4. NICA project status and plans 4.5. NICA Collaboration Budker INP Booster RF system Booster electron cooling Collider RF system Collider SC magnets (expertise) HV electron cooler for collider Electronics (?) All-Russian Institute for Electrotechnique HV Electron cooler GSI/FAIR SC dipoles for Booster/SIS-100 SC dipoles for Collider IHEP (Protvino) Injector Linac FZ Jűlich (IKP) HV Electron cooler Stoch. cooling Fermilab HV Electron cooler Stoch. cooling BNL (RHIC) Electron & Stoch. Cooling ITEP: Beam dynamics in the collider Corporation “Powder Metallurgy” (Minsk, Belorussia): I.Meshkov, Status of NICA Project Technology of TiN coating of vacuum chamber walls for reduction of VIII Sarantsev Seminar Alushta, September 1, 2009 secondary emission 53 Thank you for your attention! I.Meshkov, NICA Project Status ANKE/PAX Workshop Dubna, June 22-26, 200954