Brownian Motion in AdS/CFT
Download
Report
Transcript Brownian Motion in AdS/CFT
Masaki Shigemori
University of Amsterdam
Tenth Workshop on Non-Perturbative QCD
l’Institut d’Astrophysique de Paris
Paris, 11 June 2009
J. de Boer, V. E. Hubeny, M. Rangamani, M.S.,
“Brownian motion in AdS/CFT,” arXiv:0812.5112.
A. Atmaja, J. de Boer, K. Schalm, M.S., work in
progress.
2
3
AdS
CFT
black hole in
quantum gravity
plasma in strongly
coupled QFT
?
horizon dynamics
in classical GR
difficult
Long-wavelength
approximation
hydrodynamics
Navier-Stokes eq.
easier;
betterunderstood
Bhattacharyya+Minwalla+
Rangamani+Hubeny 0712.2456
4
Hydro: coarse-grained
BH in classical GR is also macro, approx. description
of underlying microphysics of QG BH!
coarse
grain
Can’t study microphysics within hydro framework
(by definition)
want to go beyond hydro approx
5
― Historically, a crucial step
toward microphysics of nature
1827 Brown
erratic motion
Robert Brown (1773-1858)
pollen particle
Due to collisions with fluid particles
Allowed to determine Avogadro #: 𝑁𝐴 = 6 × 1023 < ∞
Ubiquitous
Langevin eq. (friction + random force)
6
Do the same for hydro. in AdS/CFT!
Learn about QG from BM on boundary
How does Langevin dynamics come about
from bulk viewpoint?
Fluctuation-dissipation theorem
Relation to RHIC physics?
Related work:
drag force: Herzog+Karch+Kovtun+Kozcaz+Yaffe, Gubser, Casalderrey-Solana+Teaney
transverse momentum broadening: Gubser, Casalderrey-Solana+Teaney
7
endpoint =
Brownian particle
Brownian
motion
AdS boundary
at infinity
fundamental
string
horizon
black hole
8
Intro/motivation
BM
BM in AdS/CFT
Time scales
BM on stretched horizon
9
Paul Langevin (1872-1946)
10
Generalized Langevin eq:
𝑡
𝑝 𝑡 =−
𝑥, 𝑝 = 𝑚𝑥
𝑑𝑡′ 𝛾 𝑡 − 𝑡 ′ 𝑝 𝑡′ + 𝑅(𝑡)
−∞
delayed
friction
𝑅 𝑡
= 0,
𝑅 𝑡 𝑅 𝑡′
random
force
= 𝜅(𝑡 − 𝑡 ′ )
11
Displacement:
𝑠2 𝑡
≡ 𝑥 𝑡 −𝑥 0
2
𝑇 2
𝑡
𝑚
≈
(𝑡 ≪ 𝑡𝑟𝑒𝑙𝑎𝑥 )
2𝐷𝑡
(𝑡 ≫ 𝑡𝑟𝑒𝑙𝑎𝑥 )
𝑇
𝐷
≡
, 𝛾 =
diffusion constant
𝛾0 𝑚 0
ballistic regime
(init. velocity 𝑥~ 𝑇/𝑚 )
diffusive regime
(random walk)
∞
𝑑𝑡 𝛾(𝑡)
0
12
1
Relaxation time 𝑡relax ≡
, 𝛾0 =
𝛾0
Collision duration time 𝑡coll
𝑅 𝑡 𝑅 0
∼ 𝑒 −𝑡/𝑡 coll
Mean-free-path time 𝑡mfp
𝑑𝑡 𝛾(𝑡)
0
time elapsed
in a single collision
time between collisions
R(t)
Typically
𝑡coll
𝑡relax ≫ 𝑡mfp ≫ 𝑡coll
t
𝑡mfp
∞
but not necessarily so
for strongly coupled plasma
13
14
AdS Schwarzschild BH
endpoint =
Brownian particle
2
𝑟
2
𝑑𝑠𝑑2 = 2 −ℎ 𝑟 𝑑𝑡 2 + 𝑑𝑋𝑑−2
𝑙
𝑙 2 𝑑𝑟 2
+ 2
𝑟 ℎ(𝑟)
AdS boundary
at infinity
𝑋𝑑−2
r
𝑟𝐻
ℎ 𝑟 =1−
𝑟
Brownian
motion
fundamental
string
horizon
𝑑−1
1
𝑑 − 1 𝑟𝐻
𝑇= =
𝛽
4𝜋𝑙 2
black hole
15
endpoint =
Brownian particle
Horizon kicks endpoint on horizon
(= Hawking radiation)
boundary
𝑋𝑑−2
Fluctuation propagates to
AdS boundary
Endpoint on boundary
(= Brownian particle) exhibits BM
Brownian
motion
transverse
fluctuation
r
horizon
kick
Whole process is dual to
quark hit by QGP particles
16
𝑋𝑑−2
Probe approximation
Small gs
boundary
No interaction with bulk
The only interaction is at horizon
r
Small fluctuation
Expand Nambu-Goto action
𝑋 𝑡, 𝑟
horizon
to quadratic order
Transverse positions
𝑋𝑑−2 (𝑡, 𝑟)
are similar to Klein-Gordon scalars
17
Quadratic action
𝑋 𝑡, 𝑟
𝑆NG = const + 𝑆2 + 𝑆4 + ⋯
𝑋2
𝑟4 ℎ 𝑟 ′ 2
𝑑𝑡 𝑑𝑟
−
𝑋
4
ℎ 𝑟
𝑙
1
𝑆2 = −
4𝜋𝛼 ′
Mode expansion
∞
𝑋 𝑡, 𝑟 =
0
𝑑𝜔 𝑓𝜔 𝑟 𝑒 −𝑖𝜔𝑡 𝑎𝜔 + h. c.
ℎ 𝑟
𝜔 + 4 𝜕𝑟 𝑟 4 ℎ 𝑟 𝜕𝑟
𝑙
2
𝑓𝜔 𝑟 = 0
d=3: can be solved exactly
d>3: can be solved in low frequency limit
18
Near horizon:
∞
𝑋 𝑡, 𝑟 ∼
0
outgoing
mode
𝑑𝜔
𝑒 −𝑖𝜔 (𝑡−𝑟∗ ) + 𝑒 𝑖𝜃𝜔 𝑒 −𝑖𝜔 (𝑡+𝑟∗ ) 𝑎𝜔 + h. c.
2𝜔
Near boundary
𝑋 𝑡, 𝑟c ≡ 𝑥(𝑡) =
ingoing
mode
phase shift
∞
0
𝑟∗ : tortoise coordinate
𝑑𝜔 𝑓𝜔 (𝑟𝑐 )𝑒 −𝑖𝜔𝑡 𝑎𝜔 + h. c.
𝑟c : cutoff
†
𝑥 𝑡1 𝑥 𝑡2 ⋯ ↔ 𝑎𝜔 1 𝑎𝜔
⋯
2
observe BM
in gauge theory
correlator of
radiation modes
Can learn about quantum gravity in principle!
19
Semiclassically, NH modes are thermally excited:
†
𝑎𝜔 𝑎𝜔
1
∝ 𝛽𝜔
𝑒 −1
Can use dictionary to compute x(t), s2(t) (bulk boundary)
𝑠 2 (𝑡) ≡ : 𝑥 𝑡 − 𝑥 0
𝑡𝑟𝑒𝑙𝑎𝑥
𝛼′ 𝑚
∼ 2 2
𝑙 𝑇
2
: ≈
𝑇 2
𝑡
𝑚
(𝑡 ≪ 𝑡𝑟𝑒𝑙𝑎𝑥 )
ballistic
𝛼′
𝑡
2
𝜋𝑙 𝑇
(𝑡 ≫ 𝑡𝑟𝑒𝑙𝑎𝑥 )
diffusive
Does exhibit
Brownian motion
20
21
𝑡re lax
𝑡mfp
𝑡coll
information about
plasma constituents
R(t)
𝑡coll
t
𝑡mfp
22
Simplifying assumptions:
R(t) : consists of many pulses randomly distributed
𝑘
𝑅 𝑡 =
𝜖𝑖 𝑓 𝑡 − 𝑡𝑖
𝑓(𝑡 − 𝑡1 ) 𝑓(𝑡 − 𝑡2 )
𝑖=1
𝑓(𝑡) : shape of a single pulse
𝜖3 = −1
𝜖1 = 1
𝜖2 = 1
𝜖𝑖 = ±1 : random sign
−𝑓(𝑡 − 𝑡3 )
Distribution of pulses = Poisson distribution
𝜇 : number of pulses per unit time, ∼ 1/𝑡mfp
23
2-pt func
𝑅 𝑡 𝑅 0
Low-freq. 4-pt func
→ 𝑡coll
𝑅 𝜔1 𝑅 𝜔2 𝑅 𝜔3 𝑅 𝜔4
𝑅 0
2
= 𝜇𝑇𝑓 0
2
𝑅 0
4
= 3𝑅 0
2 2
𝑇 ≡ 2𝜋𝛿 0 ,
+ 𝜇𝑇𝑓 0
→ 𝑡mfp
4
tilde = Fourier transform
Can determine μ, thus tmfp
24
k pulses
𝑘
𝑅 𝑡 =
…
0
𝑡1
𝜖𝑖 𝑓 𝑡 − 𝑡𝑖
𝑡2
𝑡𝑘 𝜏
𝑖=1
Probability that there are k pulses in period [0,τ]:
𝑃𝑘 𝜏 = 𝑒 −𝜇𝜏
2-pt func:
(Poisson dist.)
𝑘
∞
𝑅 𝑡 𝑅(𝑡 ′ ) =
𝜇𝜏 𝑘
𝑘!
𝑃𝑘 𝜏
𝑘=1
𝜖𝑖 𝜖𝑗 𝑓 𝑡 − 𝑡𝑖 𝑓(𝑡 − 𝑡𝑗 )
𝑘
𝑖,𝑗 =1
𝜖𝑖 = ±1 ∶ random signs → 𝜖𝑖 𝜖𝑗 = 𝛿𝑖𝑗
𝑓 𝑡 − 𝑡𝑖 𝑓 𝑡 ′ − 𝑡𝑖
𝑘
𝑘
=
𝜏
𝜏
0
𝑑𝑢 𝑓 𝑡 − 𝑢 𝑓(𝑡 ′ − 𝑢)
25
∞
𝑅 𝑡 𝑅(𝑡 ′ ) = 𝜇
𝑑𝑢 𝑓 𝑡 − 𝑢 𝑓(𝑡 ′ − 𝑢)
−∞
𝑅 𝜔 𝑅(𝜔′) = 2𝜋𝜇𝛿 𝜔 + 𝜔′ 𝑓 𝜔 𝑓(𝜔′)
Similarly, for 4-pt func,
“disconnected part”
“connected
part”
𝑅 𝜔 𝑅(𝜔′)𝑅(𝜔′′)𝑅(𝜔′′′)
= 𝑅 𝜔 𝑅 𝜔′ 𝑅(𝜔′′)𝑅 (𝜔′′′) + 2 more terms
+2𝜋𝜇𝛿 𝜔 + 𝜔′ + 𝜔′′ + 𝜔′′′ 𝑓 𝜔 𝑓 𝜔′ 𝑓 𝜔′′ 𝑓 𝜔′′′
𝑅 0
2
𝑅 0
4
= 𝜇𝑇𝑓 0
2
= 3𝑅 0
2 2
+ 𝜇𝑇𝑓 0
4
𝑇 ≡ 2𝜋𝛿 0
26
Can compute tmfp from correction to 4-pt func.
Expansion of NG action to higher order:
𝑆NG = const + 𝑆2 + 𝑆4 + ⋯
1
𝑆4 =
16𝜋𝛼 ′
2
4
𝑋
𝑟 ℎ 𝑟 ′2
𝑑𝑡 𝑑𝑟
−
𝑋
4
ℎ 𝑟
𝑙
Can compute 𝑅𝑅𝑅𝑅
and thus tmfp
2
𝑋 𝑡, 𝑟
c
27
Resulting timescales:
𝑡relax ~
𝑚
𝜆
𝑇2
weak coupling
1
𝑡coll ~
𝑇
𝑡mfp ~
1
𝜆𝑇
𝑙4
𝜆 = ′2
𝛼
𝜆≪1
𝑡relax ≫ 𝑡mfp ≫ 𝑡coll
conventional kinetic theory is good
28
Resulting timescales:
𝑡relax ~
𝑚
𝜆
𝑇2
1
𝑡coll ~
𝑇
𝑡mfp ~
𝜆≫1
≪ 𝑡coll . 𝑡relax ≪ 𝑡coll
1
𝜆𝑇
𝑙4
𝜆 = ′2
𝛼
strong coupling
𝑡mfp
is also possible.
Multiple collisions occur simultaneously.
Cf. “fast scrambler”
29
(Jorge’s talk)
30
31
Boundary BM ↔ bulk “Brownian string”
can study QG in principle
Semiclassically, can reproduce Langevin dyn. from bulk
random force ↔ Hawking rad. (kicking by horizon)
friction
↔ absorption
Time scales in strong coupling QGP:
𝑡relax , 𝑡mfp , 𝑡coll
BM on stretched horizon (Jorge’s talk)
Fluctuation-dissipation theorem
32
33