Transcript Document
Lecture 12 Electromagnetic Oscillations and Alternating Current Chp. 33 • • • Cartoon -. Opening Demo - Warm-up problem Physlet Topics – – – – – – • LC Circuit Qualitatively Electrical and Magnetic energy oscillations Alternating current \Pure R and L, circuti Series RLC circuit Power and Transfomers Demos – – LR circuit Series LRC circuit Axis of rotation Coil of wire m B nˆdA B dA B cos dA nˆ B d d(BAcos ) d cos d BA BAsin dt dt dt dt d BA sin but t so dt BA sint m sint 2pf and f= 60 Hz Where is the rotational angular frequency of the generator phase m sin(t ) Instantaneousvoltage Amplitude time Angular frequency m Phasor diagram t Phase constat v R Ri vR vL i I sin(t) m sint 2pf di I cos(t) dt f 1000 Hz di v L L LI cos(t) dt v L LI cos( t) I R R V L = 4.22mH I X L L V L VR=RI VL= XLIL or VL= (L)I since I=IL Impedance Z: New quantity for AC circuits. This is analogous to resistance in DC circuits Z R2 (L)2 I I m Z m R (L) 2 X L L 2 RL Circuit Example Suppose m = 100 volts, f=1000 Hz, R=10 Ohms, L=4.22 mH, Find XL, Z, I, VR, and Vl. X L L 6.28 1000 0.00422 H 26.5 Z R2 (L)2 Z 102 (26.5)2 28.3 m 100 I 3.53A Z 28.3 VR RI 10 3.53 35.3v VL X L I 26.5 3.53 93.5v Power in AC circuits P i 2 R (I sin(t)) 2 R Instantaneous power doesn’t mean anything Need to average over time or one period of the sine wave Pavg 2p 1 2p Rd (I sin()) 2 0 Note Irms 2 Pavg Irms R I 2 2p 1 2p 1 I 2 RI sin d RI ( ) R 2 2 0 2 2 2 Averaging over a sine curve Calculate Power lost in resistor from example 2 Pavg Irms R Irms I 3.53A 2.50 A 2 1.414 Pavg (2.50A)210 62.5Watts To calculate power produced by the generator you need to take account of the phase difference between the voltage and the current. In general you can write: Pavg rms Irms cos For an inductor P = 0 because the phase difference between current through the inductor and voltage across the inductor is 90 degrees Series LRC circuit VR v R vC v L VC m sint i I sin(t ) I R (XL XC ) 2 m R (X L XC ) 2 Z R 2 (L 2 m XC=1/(C) 2 VL XL=L Z 1 L C tan R 1 2 ) C ELI the ICE man Resonance X L XC 1 L C 1 LC Series LRC demo 10 uF 4.25 mH 1 1 6.28 LC 6.28 4.25 103 H 106 F f 2442Hz f Series LCR circuit