Transcript Enthalpy
Heat transfer experiments 150 mL Tf 50 mL 100o 100 mL 25o q = C x T x mass q1 = (4.184 J/oC g) x (Tf - 100) x (50 g) q2 = (4.184 J/oC g) x (Tf - 25) x (100 g) q1 = - q2 (Tf - 100) x (50) = - (Tf - 25) x (100) Tf = 50o C Enthalpy of reaction Hrxn = qrxn coffee cup calorimeter 10.5 g KBr in 125g water at 24o KBr(s) K+ (aq) + Br-(aq) Tf = 21o Calculate Hrxn qsystem = - qsurroundings = Hrxn Hrxn qsystem = - qsurroundings = Hrxn qsurroundings = C x T x mass qsurroundings = (4.184 J/goC) (21- 24oC) (10.5 g + 125 g) = -1756 J qsystem = - qsurroundings = +1756 J = Hrxn a) endothermic b) exothermic H is extensive = 167 J/g = 19873 J/mol Hrxn = 1756 J 10.5 g KBr E = q + w E = q - PV At constant V, E = qv Bomb calorimeter qrxn = qsystem = -qcalorimeter qcalorimeter = C (J / oC) x T (oC) Constant Volume calorimetry 2Fe (s) + 3/2 O2 (g) Fe2O3 (s) 11.2 g Fe(s), 1 atm O2 Ccalorimeter = 2.58 kJ/oC Tcalorimeter = + 31.9 oC qrxn = -qcalorimeter = Erxn = - (2.58 kJ/oC) (31.9oC) Erxn = - 82.2 kJ / 0.1 mol Fe2O3 = - 822 kJ/mol Fe2O3 Thermite reaction 2Al(s) +Fe2O3(s) Al2O3(s) + 2Fe(l) H is an extensive, State function Hess’ Law 2Al(s) +Fe2O3(s) Al2O3(s) + 2Fe(l) 2Al(s) + 3/2 O2(g) Al2O3(s) Fe O3(s) +3/22Fe(s) 2 2Fe(s) O2(g)+3/2FeO22O(g) _______________________________ 3(s) H = -1676 kJ/mol H = +-__________ 822 kJ/mol 2Al(s) + Fe2O3(s) Al2O3(s) + 2Fe(s) -854 kJ/mol 2 (+15 kJ/mol ) 2 2 Fe(s) Fe(l) _______________________________ __________ 2Al(s) +Fe2O3(s) Al2O3(s) + 2Fe(l) Hrxn = -824 kJ/mol Hess’ Law • Always end up with exactly the same reactants and products • If you reverse a reaction, reverse the sign of H • If you change the stoichiometry, change H Heats of formation, Hof H = heat lost or gained by a reaction “o” = standard conditions: all solutes 1M all gases 1 atm “f” = formation reaction: 1mol product from elements in standard states for elements in standard states, Hof = 0 2Al(s) +Fe2O3(s) Al2O3(s) + 2Fe(l) reactants 2 Al(s) products elements 2 Al(s) Hof Al2O3(s) 2 Fe(s) Fe2O3 3/2 O2(g) Hof Al2O3(s) + 2 Hof Fe (l) 2 Fe (l) Fe2O3 Al(s) 2Al(s) +Fe2O3(s) Al2O3(s) + 2Fe(l) reactants 2 Al(s) products elements 2 Al(s) Hof Al2O3(s) 2 Fe(s) Fe2O3 3/2 O2(g) 2 Fe (l) Hof Al2O3(s) + 2 Hof Fe (l) - Hof Fe2O3 - Hof Al(s) Hrxn = nHof products - nHof reactants 2Al(s) +Fe2O3(s) Al2O3(s) + 2Fe(l) Hrxn = nHof products - nHof reactants Hrxn = [Hof Al2O3(s) + 2 Hof Fe(l)] - [Hof Fe2O3(s) + 2 Hof Al(s)] Hrxn = [(-1676) + 2 (15)]- [(-822) + 0]kJ = -824 kJ Bond Energies chemical reactions = bond breakage and bond formation bond energies positive energy required to break bond bond breakage a) endothermic (raise P.E.) exothermic (lower P.E.) bond formation b) exothermic Bond energies CH4 (g) + 2O2 (g) CO2 (g) + 2H2O (g) C-H O=O C=O O-H 413 kJ 495 kJ 799 kJ 467 kJ Hrxn = bonds broken - bonds formed Hrxn =[ 4 (C-H)+ 2 (O=O)] - [ 2 (C=O)+ 4 (O-H)] = -824 kJ Hrxn= Hof products- Hof reactants =- 802 kJ qv v.s. qp qv = E qp = H H = E + PV H = E + PV = E + nRT if n = 0 H = E 2Fe (s) + 3/2 O2 (g) Fe2O3 (s) n = (0 - 3/2) = - 3/2 H = - 822 kJ/mol + (- 3/2)(8.314 x 10-3 kJ)(298) H = -826 kJ/mol