Transcript Slide 1
Lab 13 – Complex Power EE 188L Instantaneous Power Time domain Instantaneous Power : pt it vt SinusoidalVoltage : vt VM sint v SinusoidalCurrent : it I M sint i Instantaneous Power pt it vt 1 1 VM I M cos v i VM I M cos2t v i 2 2 constant with time = P (real or average power) time varying frequency = 2 Phase Shift f = 624 Hz T = 1 / 624 Hz = 1.60 ms 1 0.5 voltage leads current by 0.22 ms v( t ) i( t ) 0 (v - i) / 360° = 0.22 ms / 1.60 ms v - i = 50° (lagging) 0.5 1 0 5 10 4 0.001 0.0015 t 0.002 0.0025 For an impedance with v(t) and i(t), θz = θv - θi = 50° (resistive and inductive) Complex Power Complex power : Frequency domain using phasors 1 * S VI = P + j·Q 2 where S is the complex power (VA) V VM v I I M i P is the average power (watts) I* I M i Q is the reactive power (VAR’s or volts amps reactive 1 S VM I M v i 2 S Vrms I rms v i where Vrms VM 2 I I rms M 2 Apparent Power Apparent Power : S S Vrms I rms units: volt-amperes, VA Power Factor, pf : pf cos( v i ) Q tan( v i ) P Load : V VM Z v i I IM Ideal pf = 1 lagging if (θv – θi) > 0º leading if (θv – θi) < 0º Inductive Load S S Vrms I rms P 2 Q 2 Neglecting Rs R2 L = 100 mH Vm = 1 V f = 624 Hz Real Power, Watts, W : 1 VM2 R1 R2 P 2 2 L2 R1 R2 2 R1 = 100 W Delivered to R1 and R2 RS = 10 W Reactive Power, volts- ampere - reactive, VAR : VM2 L 1 Q 2 2 L2 R1 R2 2 Delivered to L Compensated Load To increase power factor to 1, add compensating capacitor: Again neglecting Rs Real Power : 1 VM2 R1 R2 (same as before) P 2 2 L2 R1 R2 2 R2 C L = 100 mH Vm = 1 V f = 624 Hz Reactive Power : 1 VM2 L C 2 L2 R1 R2 2 Q 2 2 L2 R1 R2 2 [ Which is zero if pf = 1. ] R1 = 100 W RS = 10 W Current P Vrms I rms cos( v i ) or I rms P Vrms pf Power Triangle S Q v - i P